Exact adaptive pointwise estimation on Sobolev classes of densities
ESAIM: Probability and Statistics (2010)
- Volume: 5, page 1-31
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topButucea, Cristina. "Exact adaptive pointwise estimation on Sobolev classes of densities." ESAIM: Probability and Statistics 5 (2010): 1-31. <http://eudml.org/doc/197754>.
@article{Butucea2010,
abstract = {
The subject of this paper is to estimate adaptively the common probability
density of n independent, identically distributed random variables. The
estimation is done at a fixed point $x_\{0\}\in \mathbb R$, over the density
functions that belong to the Sobolev class Wn(β,L). We consider the
adaptive problem setup, where the regularity parameter β is unknown
and varies in a given set Bn. A sharp adaptive estimator is obtained,
and the explicit asymptotical constant, associated to its rate of
convergence is found.
},
author = {Butucea, Cristina},
journal = {ESAIM: Probability and Statistics},
keywords = {Density estimation; exact asymptotics; pointwise risk; sharp adaptive estimator.; sharp adaptive estimators},
language = {eng},
month = {3},
pages = {1-31},
publisher = {EDP Sciences},
title = {Exact adaptive pointwise estimation on Sobolev classes of densities},
url = {http://eudml.org/doc/197754},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Butucea, Cristina
TI - Exact adaptive pointwise estimation on Sobolev classes of densities
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 1
EP - 31
AB -
The subject of this paper is to estimate adaptively the common probability
density of n independent, identically distributed random variables. The
estimation is done at a fixed point $x_{0}\in \mathbb R$, over the density
functions that belong to the Sobolev class Wn(β,L). We consider the
adaptive problem setup, where the regularity parameter β is unknown
and varies in a given set Bn. A sharp adaptive estimator is obtained,
and the explicit asymptotical constant, associated to its rate of
convergence is found.
LA - eng
KW - Density estimation; exact asymptotics; pointwise risk; sharp adaptive estimator.; sharp adaptive estimators
UR - http://eudml.org/doc/197754
ER -
References
top- A. Barron, L. Birge and P. Massart, Risk bounds for model selection via penalization. Probab. Theory Related Fields113 (1995) 301-413.
- O.V. Besov, V.L. Il'in and S.M. Nikol'skii, Integral representations of functions and imbedding theorems. J. Wiley, New York (1978).
- L. Birge and P. Massart, From model selection to adaptive estimation, Festschrift fur Lucien Le Cam. Springer (1997) 55-87.
- L.D. Brown and M.G. Low, A constrained risk inequality with application to nonparametric functional estimation. Ann. Statist.24 (1996) 2524-2535.
- C. Butucea, The adaptive rates of convergence in a problem of pointwise density estimation. Statist. Probab. Lett.47 (2000) 85-90.
- C. Butucea, Numerical results concerning a sharp adaptive density estimator. Comput. Statist.1 (2001).
- L. Devroye and G. Lugosi, A universally acceptable smoothing factor for kernel density estimates. Ann. Statist.24 (1996) 2499-2512.
- D.L. Donoho, I. Johnstone, G. Kerkyacharian and D. Picard, Wavelet shrinkage: Asymptopia? J. R. Stat. Soc. Ser. B Stat. Methodol.57 (1995) 301-369.
- D.L. Donoho, I. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding. Ann. Statist.24 (1996) 508-539.
- D.L. Donoho and M.G. Low, Renormalization exponents and optimal pointwise rates of convergence. Ann. Statist.20 (1992) 944-970.
- S.Yu. Efromovich, Nonparametric estimation of a density with unknown smoothness. Theory Probab. Appl.30 (1985) 557-568.
- S.Yu. Efromovich and M.S. Pinsker, An adaptive algorithm of nonparametric filtering. Automat. Remote Control11 (1984) 1434-1440.
- A. Goldenshluger and A. Nemirovski, On spatially adaptive estimation of nonparametric regression. Math. Methods Statist.6 (1997) 135-170.
- G.K. Golubev, Adaptive asymptotically minimax estimates of smooth signals. Problems Inform. Transmission23 (1987) 57-67.
- G.K. Golubev, Quasilinear estimates for signals in . Problems Inform. Transmission26 (1990) 15-20.
- G.K. Golubev, Nonparametric estimation of smooth probability densities in . Problems Inform. Transmission28 (1992) 44-54.
- G.K. Golubev and M. Nussbaum, Adaptive spline estimates in a nonparametric regression model. Theory Probab. Appl.37 (1992) 521-529.
- I.A. Ibragimov and R.Z. Hasminskii, Statistical estimation: Asymptotic theory. Springer-Verlag, New York (1981).
- A. Juditsky, Wavelet estimators: Adapting to unknown smoothness. Math. Methods Statist.6 (1997) 1-25.
- G. Kerkyacharian and D. Picard, Density estimation by kernel and wavelet method, optimality in Besov space. Statist. Probab. Lett.18 (1993) 327-336.
- G. Kerkyacharian, D. Picard and K. Tribouley, adaptive density estimation. Bernoulli2 (1996) 229-247.
- J. Klemelä and A.B. Tsybakov, Sharp adaptive estimation of linear functionals, Prépublication 540. LPMA Paris 6 (1999).
- O.V. Lepskii, On a problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl.35 (1990) 454-466.
- O.V. Lepskii, Asymptotically minimax adaptive estimation I: Upper bounds. Optimally adaptive estimates. Theory Probab. Appl.36 (1991) 682-697.
- O.V. Lepskii, On problems of adaptive estimation in white Gaussian noise. Advances in Soviet Math. Amer. Math. Soc.12 (1992b) 87-106.
- O.V. Lepski and B.Y. Levit, Adaptive minimax estimation of infinitely differentiable functions. Math. Methods Statist.7 (1998) 123-156.
- O.V. Lepski, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable bandwidth selectors. Ann. Statist.25 (1997) 929-947.
- O.V. Lepski and V.G. Spokoiny, Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist.25 (1997) 2512-2546.
- D. Pollard, Convergence of Stochastic Processes. Springer-Verlag, New York (1984).
- A.B. Tsybakov, Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes. Ann. Statist.26 (1998) 2420-2469.
- S. Van de Geer, A maximal inequality for empirical processes, Technical Report TW 9505. University of Leiden, Leiden (1995).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.