Finding the principal points of a random variable
Emilio Carrizosa; E. Conde; A. Castaño; D. Romero–Morales
RAIRO - Operations Research (2010)
- Volume: 35, Issue: 3, page 315-328
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topCarrizosa, Emilio, et al. "Finding the principal points of a random variable." RAIRO - Operations Research 35.3 (2010): 315-328. <http://eudml.org/doc/197828>.
@article{Carrizosa2010,
abstract = {
The p-principal points of a random variable X with finite
second moment
are those p
points in $\{\mathbb R\}$ minimizing the expected squared distance from X to
the closest point.
Although the determination of principal points involves in general the
resolution of a multiextremal optimization problem, existing procedures in
the literature provide just a local optimum. In this paper we show that
standard Global Optimization techniques can be applied.
},
author = {Carrizosa, Emilio, Conde, E., Castaño, A., Romero–Morales, D.},
journal = {RAIRO - Operations Research},
keywords = {Principal points; d.c. functions; branch and bound.; principal points; branch and bound},
language = {eng},
month = {3},
number = {3},
pages = {315-328},
publisher = {EDP Sciences},
title = {Finding the principal points of a random variable},
url = {http://eudml.org/doc/197828},
volume = {35},
year = {2010},
}
TY - JOUR
AU - Carrizosa, Emilio
AU - Conde, E.
AU - Castaño, A.
AU - Romero–Morales, D.
TI - Finding the principal points of a random variable
JO - RAIRO - Operations Research
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 3
SP - 315
EP - 328
AB -
The p-principal points of a random variable X with finite
second moment
are those p
points in ${\mathbb R}$ minimizing the expected squared distance from X to
the closest point.
Although the determination of principal points involves in general the
resolution of a multiextremal optimization problem, existing procedures in
the literature provide just a local optimum. In this paper we show that
standard Global Optimization techniques can be applied.
LA - eng
KW - Principal points; d.c. functions; branch and bound.; principal points; branch and bound
UR - http://eudml.org/doc/197828
ER -
References
top- E. Carrizosa, E. Conde, A. Casta no, I. Espinosa, I. González and D. Romero-Morales, Puntos principales: Un problema de Optimización Global en Estadística, Presented at XXII Congreso Nacional de Estadística e Investigación Operativa. Sevilla (1995).
- D.R. Cox, A use of complex probabilities in the theory of stochastic processes, in Proc. of the Cambridge Philosophical Society, Vol. 51 (1955) 313-319.
- B. Flury, Principal points. Biometrika77 (1990) 33-41.
- B. Flury and T. Tarpey, Representing a Large Collection of Curves: A Case for Principal Points. Amer. Statist.47 (1993) 304-306.
- R. Fourer, D.M. Gay and B.W. Kernigham, AMPL, A modeling language for Mathematical Programming. The Scientific Press, San Francisco (1993).
- E. Gelenbe and R.R. Muntz, Probabilistic Models of Computer Systems-Part I. Acta Inform.7 (1976) 35-60.
- R. Horst, An Algorithm for Nonconvex Programming Problems. Math. Programming10 (1976) 312-321.
- R. Horst and H. Tuy, Global Optimization. Deterministic Approaches. Springer-Verlag, Berlin (1993).
- S.P. Lloyd, Least Squares Quantization in PCM. IEEE Trans. Inform. Theory 28 (1982) 129-137.
- L. Li and B. Flury, Uniqueness of principal points for univariate distributions. Statist. Probab. Lett.25 (1995) 323-327.
- K. Pötzelberger and K. Felsenstein, An asymptotic result on principal points for univariate distribution. Optimization28 (1994) 397-406.
- S. Rowe, An Algorithm for Computing Principal Points with Respect to a Loss Function in the Unidimensional Case. Statist. Comput.6 (1997) 187-190.
- T. Tarpey, Two principal points of symmetric, strongly unimodal distributions. Statist. Probab. Lett.20 (1994) 253-257.
- T. Tarpey, Principal points and self-consistent points of symmetric multivariate distributions. J. Multivariate Anal.53 (1995) 39-51.
- T. Tarpey, L. Li and B. Flury, Principal points and self-consistent points of elliptical distributions. Ann. Statist.23 (1995) 103-112.
- A. Zoppè, Principal points of univariate continuous distributions. Statist. Comput.5 (1995) 127-132.
- A. Zoppè, On Uniqueness and Symmetry of self-consistent points of univariate continuous distribution. J. Classification14 (1997) 147-158.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.