Finding the principal points of a random variable
Emilio Carrizosa; E. Conde; A. Castaño; D. Romero–Morales
RAIRO - Operations Research (2010)
- Volume: 35, Issue: 3, page 315-328
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- E. Carrizosa, E. Conde, A. Casta no, I. Espinosa, I. González and D. Romero-Morales, Puntos principales: Un problema de Optimización Global en Estadística, Presented at XXII Congreso Nacional de Estadística e Investigación Operativa. Sevilla (1995).
- D.R. Cox, A use of complex probabilities in the theory of stochastic processes, in Proc. of the Cambridge Philosophical Society, Vol. 51 (1955) 313-319.
- B. Flury, Principal points. Biometrika77 (1990) 33-41.
- B. Flury and T. Tarpey, Representing a Large Collection of Curves: A Case for Principal Points. Amer. Statist.47 (1993) 304-306.
- R. Fourer, D.M. Gay and B.W. Kernigham, AMPL, A modeling language for Mathematical Programming. The Scientific Press, San Francisco (1993).
- E. Gelenbe and R.R. Muntz, Probabilistic Models of Computer Systems-Part I. Acta Inform.7 (1976) 35-60.
- R. Horst, An Algorithm for Nonconvex Programming Problems. Math. Programming10 (1976) 312-321.
- R. Horst and H. Tuy, Global Optimization. Deterministic Approaches. Springer-Verlag, Berlin (1993).
- S.P. Lloyd, Least Squares Quantization in PCM. IEEE Trans. Inform. Theory 28 (1982) 129-137.
- L. Li and B. Flury, Uniqueness of principal points for univariate distributions. Statist. Probab. Lett.25 (1995) 323-327.
- K. Pötzelberger and K. Felsenstein, An asymptotic result on principal points for univariate distribution. Optimization28 (1994) 397-406.
- S. Rowe, An Algorithm for Computing Principal Points with Respect to a Loss Function in the Unidimensional Case. Statist. Comput.6 (1997) 187-190.
- T. Tarpey, Two principal points of symmetric, strongly unimodal distributions. Statist. Probab. Lett.20 (1994) 253-257.
- T. Tarpey, Principal points and self-consistent points of symmetric multivariate distributions. J. Multivariate Anal.53 (1995) 39-51.
- T. Tarpey, L. Li and B. Flury, Principal points and self-consistent points of elliptical distributions. Ann. Statist.23 (1995) 103-112.
- A. Zoppè, Principal points of univariate continuous distributions. Statist. Comput.5 (1995) 127-132.
- A. Zoppè, On Uniqueness and Symmetry of self-consistent points of univariate continuous distribution. J. Classification14 (1997) 147-158.