Une approche hybride pour le sac à dos multidimensionnel en variables 0–1
RAIRO - Operations Research (2010)
- Volume: 35, Issue: 4, page 415-438
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topVasquez, Michel, and Hao, Jin-Kao. "Une approche hybride pour le sac à dos multidimensionnel en variables 0–1." RAIRO - Operations Research 35.4 (2010): 415-438. <http://eudml.org/doc/197839>.
@article{Vasquez2010,
abstract = {We present, in this article, a hybrid approach for
solving
the 0–1 multidimensional knapsack problem (MKP). This approach combines
linear
programming and Tabu search.
The resulting algorithm improves on the best result on many well-known
hard benchmarks.
},
author = {Vasquez, Michel, Hao, Jin-Kao},
journal = {RAIRO - Operations Research},
keywords = {Sac-à-dos multidimensionnel; programmation linéaire;
recherche tabou.; 0-1 multidimensional knapsack problem; linear programming; tabu search},
language = {fre},
month = {3},
number = {4},
pages = {415-438},
publisher = {EDP Sciences},
title = {Une approche hybride pour le sac à dos multidimensionnel en variables 0–1},
url = {http://eudml.org/doc/197839},
volume = {35},
year = {2010},
}
TY - JOUR
AU - Vasquez, Michel
AU - Hao, Jin-Kao
TI - Une approche hybride pour le sac à dos multidimensionnel en variables 0–1
JO - RAIRO - Operations Research
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 4
SP - 415
EP - 438
AB - We present, in this article, a hybrid approach for
solving
the 0–1 multidimensional knapsack problem (MKP). This approach combines
linear
programming and Tabu search.
The resulting algorithm improves on the best result on many well-known
hard benchmarks.
LA - fre
KW - Sac-à-dos multidimensionnel; programmation linéaire;
recherche tabou.; 0-1 multidimensional knapsack problem; linear programming; tabu search
UR - http://eudml.org/doc/197839
ER -
References
top- R. Aboudi et K. Jörnsten, Tabu Search for General Zero-One Integer Programs using the Pivot and Complement Heuristic. ORSA J. Comput.6 (1994) 82-93.
- E. Balas et C.H. Martin, Pivot and Complement a Heuristic for 0-1 Programming. Management Sci.26 (1980) 86-96.
- R. Battiti et G. Tecchiolli, The reactive tabu search. ORSA J. Comput.6 (1994) 128-140.
- R. Bellman et D. Stuart, Applied Dynamic Programming. Princeton University Press (1962).
- P. Boucher et G. Plateau, Étude des méthodes de bruitage appliquées au problème du sac à dos à plusieurs contraintes en variables 0-1, dans JNPCC'99 5es journées nationales sur la résolution pratique de problèmes NP-complets (1999) 151-162.
- I. Charon et O. Hudry, The noising method: A new method for combinatorial optimization. Oper. Res. Lett.14 (1993) 133-137.
- P.C. Chu et J.E. Beasley, A genetic algorithm for the multidimensional knapsack problem. J. Heuristic4 (1998) 63-86.
- F. Dammeyer et S. Voß, Dynamic tabu list management using the reverse elimination method. Ann. Oper. Res.41 (1993) 31-46.
- G.B. Dantzig, Discrete-variable extremum problems. Oper. Res.5 (1957) 266-277.
- A. Drexl, A simulated annealing approach to the multiconstraint zero-one knapsack problem. Computing40 (1988) 1-8.
- A. Fréville et G. Plateau, Heuristic and reduction methods for multiple constraints 0-1 linear programming problems. Eur. J. Oper. Res.24 (1986) 206-215.
- A. Fréville et G. Plateau, Sac à dos multidimensionnel en variable 0-1 : encadrement de la somme des variables à l'optimum. RAIRO: Oper. Res.27 (1993) 169-187.
- A. Fréville et G. Plateau, The 0-1 bidimensional knapsack problem: Toward an efficient high-level primitive tool. J. Heuristics2 (1997) 147-167.
- X. Gandibleux et A. Fréville, The multiobjective tabu search method customized on the 0/1 multiobjective knapsack problem: The two objectives case. J. Heuristics (à paraître).
- M. Garey et D. Johnson, Computers & Intractability A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979).
- B. Gavish et H. Pirkul, Allocation of data bases and processors in a distributed computting system. Management of Distributed Data Processing31 (1982) 215-231.
- B. Gavish et H. Pirkul, Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality. Math. Programming31 (1985) 78-105.
- P.C. Gilmore et R.E. Gomory, The theory and computation of knapsack functions. Oper. Res.14 (1966) 1045-1074.
- F. Glover, Tabu search. ORSA J. Computing2 (1990) 4-32.
- F. Glover et G.A. Kochenberger, Critical event tabu search for multidimensional knapsack problems, edité par I.H. Osman et J.P. Kelly, Metaheuristics: The Theory and Applications. Kluwer Academic Publishers (1996) 407-427.
- M. Gondran et M. Minoux, Graphes & algorithmes. Eyrolles (1985).
- S. Hanafi, A. El Abdellaoui et A. Fréville, Extension de la Méthode d'Élimination Inverse pour une gestion dynamique de la liste tabou. RAIRO (à paraître).
- S. Hanafi et A. Fréville, An efficient tabu search approach for the 0-1 multidimensional knapsack problem. Eur. J. Oper. Res.106 (1998) 659-675.
- J.S. Lee et M. Guignard, An approximate algorithm for multidimensional zero-one knapsack problems a parametric approach. Management Sci.34 (1998) 402-410.
- J. Lorie et L.J. Savage, Three problems in capital rationing. J. Business28 (1955) 229-239.
- A. Lo/kketangen et F. Glover, Solving zéro-one mixed integer programming problems using tabu search. Eur. J. Oper. Res. 106 (1998). Special Issue on Tabu Search.
- A. Lo/kketangen et F. Glover, Candidate list and exploration strategies for solving 0/1 mip problems using a pivot neighborhood, dans Metaheuristics. Kluwer Academic Publishers (1999).
- S. Martello et P. Toth, Knapsack Problems: Algorithms and Computer Implementations. John Wiley (1990).
- M.A. Osorio, F. Glover et P. Hammer, Cutting and surrogate constraint analysis for improved multidimensional knapsack solutions, Technical report. Hearin Center for Enterprise Science. Report HCES-08-00 (2000).
- W.H. Press, S.A. Teukolsky, W.T. Vetterling et B.P. Flannery, Numerical Recipes in C. Cambridge University Press (1992).
- W. Shih, A branch & bound method for the multiconstraint zero-one knapsack problem. J. Oper. Res. Soc.30 (1979) 369-378.
- Y. Toyoda, A simplified algorithm for obtaining approximate solutions to zero-one programming problem. Management Sci.21 (1975) 1417-1427.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.