Pattern-mixture models

Geert Molenberghs; Herbert Thijs; Bart Michiels; Geert Verbeke; Michael G. Kenward

Journal de la société française de statistique (2004)

  • Volume: 145, Issue: 2, page 49-77
  • ISSN: 1962-5197

How to cite

top

Molenberghs, Geert, et al. "Pattern-mixture models." Journal de la société française de statistique 145.2 (2004): 49-77. <http://eudml.org/doc/198679>.

@article{Molenberghs2004,
author = {Molenberghs, Geert, Thijs, Herbert, Michiels, Bart, Verbeke, Geert, Kenward, Michael G.},
journal = {Journal de la société française de statistique},
keywords = {Delta method; Linear mixed model; Missing data; Repeated measures; Sensitivity analysis},
language = {eng},
number = {2},
pages = {49-77},
publisher = {Société française de statistique},
title = {Pattern-mixture models},
url = {http://eudml.org/doc/198679},
volume = {145},
year = {2004},
}

TY - JOUR
AU - Molenberghs, Geert
AU - Thijs, Herbert
AU - Michiels, Bart
AU - Verbeke, Geert
AU - Kenward, Michael G.
TI - Pattern-mixture models
JO - Journal de la société française de statistique
PY - 2004
PB - Société française de statistique
VL - 145
IS - 2
SP - 49
EP - 77
LA - eng
KW - Delta method; Linear mixed model; Missing data; Repeated measures; Sensitivity analysis
UR - http://eudml.org/doc/198679
ER -

References

top
  1. ALLISON P.D. (1987). Estimation of linear models with incomplete data. Sociology Methodology, 71-103. 
  2. COHEN J. and COHEN P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences. (2nd ed.). Hillsdale, NJ: Erlbaum. 
  3. DIGGLE P.J. and KENWARD M.G. (1994). Informative drop-out in longitudinal data analysis (with discussion). Applied Statistics, 4 3 , 49-93. Zbl0825.62010
  4. DRAPER D. (1995). Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society, Séries B, 57, 45-97. Zbl0812.62001MR1325378
  5. EKHOLM A. and SKINNER C. (1998). The muscatine children's obesity data reanalysed using pattern mixture models. Applied Statistics, 4 7 , 251-263. 
  6. GLYNN R.J., LAIRD N.M. and RUBIN D.B. (1986). Selection Modelling versus mixture modelling with nonignorable nonresponse. In Drawing Inferences from Self-Selected Samples, Ed. H. Wainer, pp. 115-142. New York: Springer Verlag. 
  7. GOSS P.E., WINER E.P., TANNOCK I.F., SCHWARTZ L.H. and KREMER A.B. (1999). A randomized phase III trial comparing the new potent and selective third-generation aromatase inhibitor vorozole with megestrol acetate in post-menopausal advanced breast cancer patients. Journal of Clinical Oncology, 17, 52-63. 
  8. HEDEKER D. and GIBBONS R.D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods, 2, 64-78. 
  9. HOGAN J.W. and LAIRD N.M. (1997). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine, 16, 239-258. 
  10. KENWARD M.G. and MOLENBERGHS G. (1999). Parametric models for incomplete continuous and categorical longitudinal studies data. Statistical Methods in Medical Research, 8, 51-83. 
  11. KENWARD M.G., MOLENBERGHS G. and THIJS H. (2003). Pattern-mixture models with proper time dependence. Biometrika, 90, 53-71. Zbl1035.62112MR1966550
  12. LAIRD N.M. (1994). Discussion to Diggle P.J. and Kenward M.G.: Informative dropout in longitudinal data analysis. Applied Statistics, 43, 84. 
  13. LITTLE R.J.A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 8 8 , 125-134. Zbl0775.62134
  14. LITTLE R.J.A. ( 1994a). A class of pattern-mixture models for normal incomplete data. Biometrika, 8 1 , 471-483. Zbl0816.62023MR1311091
  15. LITTLE R.J.A. ( 1994b). Discussion to Diggle P.J. and Kenward M.G.: Informative dropout in longitudinal data analysis. Applied Statistics, 43, 78. 
  16. LITTLE R.J.A. (1995). Modelling the dropout mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112-1121. Zbl0841.62099MR1354029
  17. LITTLE R.J.A. and RUBIN D.B. (1987). Statistical Analysis with Missing Data. New York: Wiley. Zbl1011.62004MR890519
  18. LITTLE R.J.A. and WANG Y. (1996). Pattern-mixture models for multivariate incomplete data with covariates. Biometrics, 52, 98-111. Zbl0875.62273
  19. MCARDLE J.J. and HAMAGAMI F. (1992). modelling incomplete longitudinal and cross-sectional data using latent growth structural models. Experimental Aging Research, 18, 145-166. 
  20. MININI P. and CHAVANCE M. ( 2004a). Observations longitudinales incomplètes : de la modélisation des observations disponibles à l'analyse de sensibilité. Journal de la Société française de Statistique, 145, 2, 5-18. 
  21. MININI P. and CHAVANCE M. ( 2004b). Sensitivity analysis of longitudinal binary data with non-monotone missing values. Biostatistics, 5, 531-544. Zbl1069.62101
  22. MOLENBERGHS G., KENWARD M. G. and LESAFFRE E. (1997). The analysis of longitudinal ordinal data with non-random dropout. Biometrika, 84, 33-44. Zbl0883.62120
  23. MOLENBERGHS G., MICHIELS B. and KENWARD M.G. (1998). Pseudo-likelihood for combined selection and pattern-mixture models for missing data problems. Biometrical Journal, 40, 557-572. Zbl0911.62020
  24. MOLENBERGHS G., MICHIELS B., KENWARD M.G. and DIGGLE P.J. (1998). Missing data mechanisms and pattern-mixture models. Statistica Neerlandica, 52, 153-161. Zbl0946.62034MR1649081
  25. MOLENBERGHS G., MICHIELS B. and LIPSITZ S.R. (1999). Selection models and pattern-mixture models for incomplete categorical data with covariates. Biometrics, 55, 978-983. Zbl1059.62677
  26. MUTHÉN B., KAPLAN D. and HOLLIS M. (1987). On structural equation modelling with data that are not missing completely at random. Psychometrika, 52, 431-462. Zbl0627.62066
  27. NELDER J.A. and MEAD R. (1965). A simplex method for function minimisation. The Computer Journal, 7, 303-313. Zbl0229.65053
  28. REISBERG B., BORENSTEIN J., SALOB S.P., FERRIS S.H., FRANSSEN E. and GEORGOTAS A. (1987). Behavioral symptoms in Alzheimer's disease: phenomenology and treatment. Journal of Clinical Psychiatry, 48, 9-13. 
  29. RUBIN D.B. (1976). Inference and missing data. Biometrika, 6 3 , 581-592. Zbl0344.62034MR455196
  30. RUBIN D.B. (1987). Multiple Imputation for Nonresponse in Surveys. John Wiley and Sons, New York. Zbl1070.62007MR899519
  31. RUBIN D.B. (1994). Discussion to Diggle, P.J. and Kenward, M.G.: Informative dropout in longitudinal data analysis. Applied Statistics, 43, 80-82. 
  32. SCHAFER J.L. (1997). Analysis of incomplete multivariate data. London: Chapman and Hall. and Hall. Zbl0997.62510MR1692799
  33. SCHIPPER H., CLINCH J. and MCMURRAY A. (1984). Measuring the quality of life of cancer patients: the Functional-Living Index-Cancer: development and validation. Journal of Clinical Oncology, 2, 472-483. 
  34. SHEINER L.B., BEAL S.L. and DUNNE A. (1997). Analysis of nonrandomly censored ordered categorical longitudinal data from analgesie trials. Journal of the American Statistical Association, 92, 1235-1244. Zbl0914.62102
  35. SHIH W.J. and QUAN H. (1997). Testing for treatment differences with dropouts present in clinical trials - A composite approach. Statistics in Medicine, 16, 1225-1239. 
  36. THIJS H., MOLENBERGHS G., MICHIELS B., VERBEKE G. and CURRAN D. (2002). Strategies to fit pattern-mixture models. Biostatistics, 3, 245-265. Zbl1133.62371
  37. VERBEKE G. and MOLENBERGHS G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer-Verlag. Zbl0956.62055MR1880596
  38. WU M.C. and BAILEY K.R. (1989). Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. Biometrics 45, 939-55. Zbl0715.62123MR1029611

NotesEmbed ?

top

You must be logged in to post comments.