Observations longitudinales incomplètes : de la modélisation des observations disponibles à l'analyse de sensibilité
Pascal Minini; Michel Chavance
Journal de la société française de statistique (2004)
- Volume: 145, Issue: 2, page 5-18
- ISSN: 1962-5197
Access Full Article
topHow to cite
topMinini, Pascal, and Chavance, Michel. "Observations longitudinales incomplètes : de la modélisation des observations disponibles à l'analyse de sensibilité." Journal de la société française de statistique 145.2 (2004): 5-18. <http://eudml.org/doc/198712>.
@article{Minini2004,
author = {Minini, Pascal, Chavance, Michel},
journal = {Journal de la société française de statistique},
language = {fre},
number = {2},
pages = {5-18},
publisher = {Société française de statistique},
title = {Observations longitudinales incomplètes : de la modélisation des observations disponibles à l'analyse de sensibilité},
url = {http://eudml.org/doc/198712},
volume = {145},
year = {2004},
}
TY - JOUR
AU - Minini, Pascal
AU - Chavance, Michel
TI - Observations longitudinales incomplètes : de la modélisation des observations disponibles à l'analyse de sensibilité
JO - Journal de la société française de statistique
PY - 2004
PB - Société française de statistique
VL - 145
IS - 2
SP - 5
EP - 18
LA - fre
UR - http://eudml.org/doc/198712
ER -
References
top- BAKER S.G., ROSENBERGER W.F. and DERSIMONIAN R. (1992). Closed-form estimates for missing counts in two-way contengency tables. Statistics in medicine 11, 643-657.
- BIRMINGHAM J., ROTNITZKY A. and FITZMAURICE G.M. (2003). Pattern-mixture and selection models for analysing longitudinal data with monotone missing patterns. Journal of the royal statistical society, Serie B 65, 275-297. Zbl1063.62039MR1959827
- BISHOP Y.M.M., FIENBERG S.E. and HOLLAND P.W. (1975). Discrete multivariate analysis : theoy and practice, MIT Press : Cambridge, Massachussetts. Zbl0332.62039MR381130
- CHAVANCE M. et MANFREDI R. (2000). Modélisation d'observations incomplètes. Revue d'épidemiologie et de santé publique 48, 389-400.
- DEMPSTER A.P., LAIRD N.M. and RUBIN D.B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the royal statistical society, Serie B 39, 1-38. Zbl0364.62022MR501537
- DIGGLE P.J. and KENWARD M.G. (1994). Informative drop-out in longitudinal data analysis (with discussion). Applied statistics 43, 49-93. Zbl0825.62010
- DIGGLE P.J., HEAGERTY P., LIANG K.Y. and ZEGER S.L. (2002). Analysis of longitudinal data, 2nd edition, Oxford University Press : Oxford. Zbl1031.62002MR2049007
- JAMSHIDIAN M. and JENNRICH R.I. (2000). Standard errors for EM estimation. Journal of the royal statistical society, Serie B 62, 257-270. MR1749538
- KENWARD M.G. (1998). Selection and models for repeated measurements with nonrandom dropout : An illustration of sensitivity. Statistics in medicine 17, 2723-2732.
- LITTLE R.J.A. (1993). Pattern-mixture models for multivariate incomplete date. Journal of the american statistical association 88, 125-134. Zbl0775.62134
- LITTLE R.J.A. ( 1994a). A class of pattern-mixture models for normal data. Biometrika 81, 471-483. Zbl0816.62023MR1311091
- LITTLE R.J.A. ( 1994b). Discussion to Diggle and Kenward : Informative drop-out in longitudinal data analysis. Applied statistics 43, 78.
- LITTLE R.J.A. (1995). Modelling the drop-out mechanism in repeated measures studies. Journal of the american statistical association 90, 1112-1121. Zbl0841.62099MR1354029
- LITTLE R.J.A. and RUBIN D.B. (1987). Statistical analysis with missing data Wiley : New-York. Zbl0665.62004MR890519
- MININI P. and CHAVANCE M. ( 2004a). Sensitivity analysis of longitudinal normal data with drop-outs. Statistics in medicine 23, 1039-1054. Zbl1069.62101
- MININI P. and CHAVANCE M. ( 2004b). Sensitivity analysis of longitudinal binary data with non-monotone missing values. Biostatistics (sous presse). Zbl1069.62101
- MOLENBERGHS G., GOETGHEBEUR E., LIPSITZ S.R. and KENWARD M.G. (1999). Nonrandom missingness in categorical data : strengths and limitations. The American Statistician 53, 110-118.
- MOLENBERGHS G., KENWARD M.G. and GOETGHEBEUR E. (2001). Sensitivity analysis for incomplete contingency tables : the Slovenian plebiscite case. Applied statistics 50, 15-29. Zbl1021.62045
- MOLENBERGHS G., THIJS H., MICHIELS B., VERBEKE G. and KENWARD M.G. (2004). Pattern-mixture models. Journal de la Société Française de Statistique 145, 2, 49-77.
- ROBINS J.M., ROTNITZKY A. and ZHAO L.P. (1995). Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data. Journal of the american statistical association 90, 106-121. Zbl0818.62042MR1325118
- ROTNITZKY A., ROBINS J.M. and SCHARFSTEIN D. (1998). Semiparametric regression for repeated outcomes with nonignorable nonresponse. Journal of the american statistical association 93, 1321-1339. Zbl1064.62520MR1666631
- ROTNITZKY A., SCHARFSTEIN D., SU T.L. and ROBINS J.M. (2001). Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring. Biometrics 57, 103-113. Zbl1209.62251MR1833295
- RUBIN D.B. (1987). Multiple imputations for nonresponse in surveys. Wiley : New-York. MR899519
- RUBIN D.B. (1994). Discussion to Diggle and Kenward : Informative drop-out in longitudinal data analysis. Applied statistics 43, 80-82.
- RUBIN D.B., STERN H.S., and VEHOVAR V. (1995). Handling "don't know" in survey responses : the case of the Slovanian plebiscite. Journal of the american statistical association 90, 822-828.
- SCHARFSTEIN D., ROTNITZKY A. and ROBINS J.M. (1999). Adjusting for nonignorable dropout using semiparametric nonresponse models (with discussion). Journal of the american statistical association 94, 1096-1146. Zbl1072.62644MR1731478
- UNNEBRINK K. and WINDELER J. (1999). Sensitivity analysis by worst and best case assessment : is it really sensitive?. Drug information journal 33, 835-839.
Citations in EuDML Documents
top- Geert Molenberghs, Herbert Thijs, Bart Michiels, Geert Verbeke, Michael G. Kenward, Pattern-mixture models
- Hélène Jacqmin-Gadda, Rodolphe Thiébaut, Modèles de sélection pour données longitudinales gaussiennes : application à l'étude du vieillissement cognitif
- Rodolphe Thiébaut, Hélène Jacqmin-Gadda, Modélisation longitudinale de données incomplètes : exemple de la charge virale plasmatique du VIH
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.