Theorie der Transformationsgruppen Abschn. 3

Sophus Lie

  • Theorie der Transformationsgruppen, Publisher: Teubner(Leipzig), 1893

Book Parts

top
  1. DEDICATION: Widmung.Access to Book Part 
  2. PREFACE: Vorrede.Access to Book Part 
  3. TABLE OF CONTENTS: Inhaltsverzeichniss.Access to Book Part 
  4. CHAPTER: Abtheilung I. Die endlichen continuirlichen Gruppen der geraden Linie und der Ebene.Access to Book Part 
  5. CHAPTER: Abtheilung II. Die endlichen continuirlichen Gruppen des gewöhnlichen Raumes.Access to Book Part 
  6. CHAPTER: Abtheilung III. Die projectiven Gruppen des gewöhnlichen Raumes.Access to Book Part 
  7. CHAPTER: Abteilung IV. Untersuchungen über verschiedene Arten von des n-fach ausgedehnten Raumes.Access to Book Part 
  8. CHAPTER: Abteilung V. Untersuchungen über die Grundlagen der Geometrie.Access to Book Part 
  9. CHAPTER: Abteilung VI. Allgemeine Betrachtungen über endliche continuirliche Gruppen.Access to Book Part 
  10. INDEX OF SUBJECTS: Sachregister.Access to Book Part 
  11. INDEX: Namenregister.Access to Book Part 
  12. ERRATA: Berichtigungen.Access to Book Part 

How to cite

top

Lie, Sophus. Theorie der Transformationsgruppen Abschn. 3. Leipzig: Teubner, 1893. <http://eudml.org/doc/202686>.

@book{Lie1893,
author = {Lie, Sophus},
language = {ger},
location = {Leipzig},
publisher = {Teubner},
title = {Theorie der Transformationsgruppen Abschn. 3},
url = {http://eudml.org/doc/202686},
year = {1893},
}

TY - BOOK
AU - Lie, Sophus
TI - Theorie der Transformationsgruppen Abschn. 3
PY - 1893
CY - Leipzig
PB - Teubner
LA - ger
UR - http://eudml.org/doc/202686
ER -

Citations in EuDML Documents

top
  1. Gaston Benneton, Configurations harmoniques et quaternions
  2. Boris Doubrov, Projective reparametrization of homogeneous curves
  3. Michel Fliess, Dorothée Normand-Cyrot, Algèbres de Lie nilpotentes, formule de Baker-Campbell-Hausdorff et intégrales itérées de K.T. Chen
  4. Lev Vasilʹevich Sabinin, Smooth quasigroups and loops: forty-five years of incredible growth
  5. Boris Doubrov, Igor Zelenko, On geometry of curves of flags of constant type
  6. Marius I. Stoka, Géométrie intégrale
  7. Jean-Paul Pier, L'apparition de la théorie des groupes topologiques

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.