# An effective p-adic analogue of a theorem of Thue II. The greatest prime factor of a binary form

Acta Arithmetica (1970)

- Volume: 16, Issue: 4, page 399-412
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topCoates, J.. "An effective p-adic analogue of a theorem of Thue II. The greatest prime factor of a binary form." Acta Arithmetica 16.4 (1970): 399-412. <http://eudml.org/doc/204937>.

@article{Coates1970,

author = {Coates, J.},

journal = {Acta Arithmetica},

language = {eng},

number = {4},

pages = {399-412},

title = {An effective p-adic analogue of a theorem of Thue II. The greatest prime factor of a binary form},

url = {http://eudml.org/doc/204937},

volume = {16},

year = {1970},

}

TY - JOUR

AU - Coates, J.

TI - An effective p-adic analogue of a theorem of Thue II. The greatest prime factor of a binary form

JO - Acta Arithmetica

PY - 1970

VL - 16

IS - 4

SP - 399

EP - 412

LA - eng

UR - http://eudml.org/doc/204937

ER -

## Citations in EuDML Documents

top- Michel Waldschmidt, Minorations effectives de formes linéaires de logarithmes (aperçu historique)
- Robert Tijdeman, Some applications of Baker's sharpened bounds to diophantine equations
- Michel Waldschmidt, La méthode de Gel'Fond en théorie des nombres transcendants
- P. Erdös, C. L. Steward, R. Tijdeman, Some diophantine equations with many solutions

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.