Some diophantine equations with many solutions
P. Erdös; C. L. Steward; R. Tijdeman
Compositio Mathematica (1988)
- Volume: 66, Issue: 1, page 37-56
- ISSN: 0010-437X
Access Full Article
topHow to cite
topErdös, P., Steward, C. L., and Tijdeman, R.. "Some diophantine equations with many solutions." Compositio Mathematica 66.1 (1988): 37-56. <http://eudml.org/doc/89898>.
@article{Erdös1988,
author = {Erdös, P., Steward, C. L., Tijdeman, R.},
journal = {Compositio Mathematica},
keywords = {diophantine inequalities; sums of integers; greatest prime factor; number of coprime solutions; S-unit equations; Thue-Mahler equations},
language = {eng},
number = {1},
pages = {37-56},
publisher = {Kluwer Academic Publishers},
title = {Some diophantine equations with many solutions},
url = {http://eudml.org/doc/89898},
volume = {66},
year = {1988},
}
TY - JOUR
AU - Erdös, P.
AU - Steward, C. L.
AU - Tijdeman, R.
TI - Some diophantine equations with many solutions
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 66
IS - 1
SP - 37
EP - 56
LA - eng
KW - diophantine inequalities; sums of integers; greatest prime factor; number of coprime solutions; S-unit equations; Thue-Mahler equations
UR - http://eudml.org/doc/89898
ER -
References
top- 1 A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser.A263 (1967/68) 173-191. Zbl0157.09702MR228424
- 2 A. Balog and A. Sárközy, On sums of sequences of integers, II, Acta Math. Hungar.44 (1984) 169-179. Zbl0559.10034MR759044
- 3 E. Bombieri and W.M. Schmidt,On Thue's equation, Invent. Math.88 (1987) 69-81. Zbl0614.10018MR877007
- 4 N.G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15 (1951) 25-32. Zbl0043.06502MR43838
- 5 N.G. de Bruijn, On the number of positive integers ≤ x and free of prime factors > y, Nederl. Akad. Wetensch. Proc. Ser.A54 (1951) 50-60. Zbl0042.04204
- 6 A.A. Buchstab, On those numbers in an arithmetical progression all prime factors of which are small in order of magnitude (Russian), Dokl. Akad. Nauk. SSSR67 (1949) 5-8. MR30995
- 7 E.R. Canfield, P. Erdös and C. Pomerance, On a problem of Oppenheim concerning 'Factorisatio Numerorum', J. Number Th.17 (1983) 1-28. Zbl0513.10043MR712964
- 8 J.-M.-F. Chamayou, A probabilistic approach to a differential-difference equation arising in analytic number theory, Math. Comp.27 (1973) 197-203. Zbl0252.65066MR336952
- 9 J. Coates, An effective p-adic analogue of a theorem of Thue, Acta Arith.15 (1968/69) 279-305. Zbl0221.10025MR242768
- 10 J. Coates, An effective p-adic analogue of a theorem of Thue II, The greatest prime factor of a binary form, Acta Arith.16 (1969/70) 399-412. Zbl0221.10026MR263741
- 11 H. Davenport and K.F. Roth, Rational approximations to algebraic numbers, Mathematika2 (1955) 160-167. Zbl0066.29302MR77577
- 12 K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astr. Fys.22 (1930) A10, 1-14. Zbl56.0178.04JFM56.0178.04
- 13 P. Erdös, The difference of consecutive primes, Duke Math. J.6 (1940) 438-441. Zbl0023.29801MR1759JFM66.0162.04
- 14 P. Erdös, Problems in number theory and combinatorics, Proc. 6th Manitoba Conference on Numerical Mathematics, Congress Numer. 18, Utilitas Math., Winnipeg, Man. (1977) 35-58. Zbl0471.10002MR532690
- 15 P. Erdös and P. Turán, On a problem in the elementary theory of numbers, Amer. Math. Monthly41 (1934) 608-611. Zbl0010.29401MR1523239JFM60.0917.05
- 16 J.-H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math.75 (1984) 561-584. Zbl0521.10015MR735341
- 17 J.-H. Evertse and K. Györy, On unit equations and decomposable form equations, J. reine angew. Math.358 (1985) 6-19. Zbl0552.10010MR797671
- 18 J.-H. Evertse, K. Györy, C.L. Stewart and R. Tijdeman, S-unit equations and their applications, New Advances in Transcendence Theory (to appear). Zbl0658.10023MR971998
- 19 J.-H. Evertse, K. Györy, C.L. Stewart and R. Tijdeman, On S-unit equations in two unknowns, Invent. Math. (to appear). Zbl0662.10012MR939471
- 20 K. Györy, Explicit upper bounds for the solutions of some Diophantine equations, Ann. Acad. Sc. Fenn. Ser. AI5 (1980) 3-12. Zbl0402.10018MR595172
- 21 K. Györy and Z.Z. Papp, Effective estimates for the integer solutions of norm form and discriminant form equations, Publ. Math. Debrecen25 (1978) 311-325. Zbl0394.10010MR517016
- 22 K. Györy and Z.Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, Studies in Pure Math. to the Memory of Paul Turán, Birkhäuser, Basel, pp. 245-257. Zbl0518.10020MR820227
- 23 K. Györy, C.L. Stewart and R. Tijdeman, On prime factors of sums of integers I, Comp. Math.59 (1986) 81-88. Zbl0602.10031MR850123
- 24 K. Györy, C.L. Stewart and R. Tijdeman, On prime factors of sums of integers III, Acta Arith. (to appear). Zbl0588.10001MR932530
- 25 G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th edn., Oxford (1979). Zbl0020.29201MR568909
- 26 A.E. Ingham, On the difference between consecutive primes, Quarterly J. Math. Oxford8 (1937) 255-266. Zbl0017.38904JFM63.0903.04
- 27 S. Lang, Integral points on curves, Publ. Math. I.H.E.S.6 (1960) 27-43. Zbl0112.13402MR130219
- 28 D.J. Lewis and K. Mahler, On the representations of integers by binary forms, Acta Arith.6 (1960) 333-363. Zbl0102.03601MR120195
- 29 J van de Lune and E. Wattel, On the numerical solution of a differential - difference equation arising in analytic number theory, Math. Comp.23 (1969) 417-421. Zbl0176.46602MR247789
- 30 K. Mahler, Zur Approximation algebraischer Zahlen, I: Über den grössten Primteiler binärer Formen, Math. Ann.107 (1933) 691-730. Zbl0006.10502MR1512822JFM59.0220.01
- 31 K. Mahler, Zur Approximation algebraischer Zahlen, II: Über die Anzahl der Darstellungen grösser Zahlen durch binäre Formen, Math. Ann.108 (1933) 37-55. Zbl0006.15604MR1512833JFM59.0220.01
- 32 K. Mahler, On the lattice points on curves of genus 1, Proc. London Math. Soc. (2) 39 (1935) 431-466. Zbl0012.15006JFM61.0146.02
- 33 K. Mahler, On Thue's equation, Math. Scand.55 (1984) 188-200. Zbl0544.10014
- 34 H. Maier, Chains of large gaps between consecutive primes, Adv. in Math.39 (1981) 257-269. Zbl0457.10023MR614163
- 35 K.K. Norton, Numbers with small prime factors, and the least k-th power non-residue, Memoirs of the American Math. Soc.106 (1971). Zbl0211.37801MR286739
- 36 A. Sárközy and C.L. Stewart, On divisors of sums of integers I, Acta Math. Hungar.48 (1986) 147-154. Zbl0612.10042MR858392
- 37 A. Sárközy and C.L. Stewart, On divisors of sums of integers II, J. reine angew. Math.365 (1986) 171-191. Zbl0578.10045MR826157
- 38 J.H. Silverman, Integer points and the rank of Thue elliptic curves, Invent. Math.66 (1982) 395-404. Zbl0494.14008MR662599
- 39 J.H. Silverman, Representations of integers by binary forms and the rank of the Mordell-Weil group, Invent. Math.74 (1983) 281-292. Zbl0525.14012MR723218
- 40 J.H. Silverman, Integer points on curves of genus 1, J. London Math. Soc.28 (1983) 1-7. Zbl0487.10015MR703458
- 41 J.H. Silverman, Quantitative results in Diophantine geometry, Preprint, M.I.T. (1984).
- 42 V.G. Sprindzhuk, Estimation of the solutions of the Thue equation (Russian), Izv. Akad. Nauk. SSSR Ser. Mat.36 (1972) 712-741. Zbl0244.10030MR313186
- 43 C.L. Stewart,, Some remarks on prime divisors of integers, Seminaire de Théorie des Nombres, Paris1984-85, Progress in Math.63, Birkhauser, Boston, etc. (1986) 217-223. Zbl0602.10030MR897351
- 44 C.L. Stewart and R. Tijdeman, On prime factors of sums of integers II, Diophantine Analysis, LMS Lecture Notes109, Cambridge Univ. Press (1986) 83-98. Zbl0602.10032MR874122
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.