Three additive cubic equations

O. D. Atkinson; J. Brüdern; R. J. Cook

Acta Arithmetica (1991)

  • Volume: 60, Issue: 1, page 29-83
  • ISSN: 0065-1036

How to cite

top

O. D. Atkinson, J. Brüdern, and R. J. Cook. "Three additive cubic equations." Acta Arithmetica 60.1 (1991): 29-83. <http://eudml.org/doc/206425>.

@article{O1991,
author = {O. D. Atkinson, J. Brüdern, R. J. Cook},
journal = {Acta Arithmetica},
keywords = {simultaneous solutions in rational integers; additive cubic diophantine equations; Hasse principle; -adic solutions; Hardy-Littlewood method},
language = {eng},
number = {1},
pages = {29-83},
title = {Three additive cubic equations},
url = {http://eudml.org/doc/206425},
volume = {60},
year = {1991},
}

TY - JOUR
AU - O. D. Atkinson
AU - J. Brüdern
AU - R. J. Cook
TI - Three additive cubic equations
JO - Acta Arithmetica
PY - 1991
VL - 60
IS - 1
SP - 29
EP - 83
LA - eng
KW - simultaneous solutions in rational integers; additive cubic diophantine equations; Hasse principle; -adic solutions; Hardy-Littlewood method
UR - http://eudml.org/doc/206425
ER -

References

top
  1. [1] M. Aigner, Combinatorial Theory, Springer, Berlin 1979. 
  2. [2] R. C. Baker, Diagonal cubic equations II, Acta Arith. 53 (1989), 217-250. Zbl0642.10041
  3. [3] R. C. Baker and J. Brüdern, On pairs of additive cubic equations, J. Reine Angew. Math. 391 (1988), 157-180. Zbl0642.10043
  4. [4] B. J. Birch, Homogeneous forms of odd degree in a large number of variables, Mathematika 4 (1957), 102-105. Zbl0081.04501
  5. [5] R. Brauer, A note on systems of homogeneous algebraic equations, Bull. Amer. Math. Soc. 51 (1945), 749-755. Zbl0063.00599
  6. [6] J. Brüdern, On pairs of diagonal cubic forms, Proc. London Math. Soc. (3) 61 (1990), 273-343. Zbl0709.11026
  7. [7] J. Brüdern and R. J. Cook, On pairs of cubic diophantine inequalities, Mathematika, to appear. Zbl0759.11009
  8. [8] N. G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15 (1951), 25-32. Zbl0043.06502
  9. [9] S. Chowla, H. B. Mann and E. G. Straus, Some applications of the Cauchy-Davenport theorem, Kon. Norske Vidensk. Selsk. Forh. 32 (1959), 74-80. Zbl0109.03206
  10. [10] R. J. Cook, A note on a lemma of Hua, Quart. J. Math. Oxford Ser. 23 (1972), 287-288. Zbl0238.10033
  11. [11] R. J. Cook, Pairs of additive equations, Michigan Math. J. 19 (1972), 325-331. Zbl0244.10046
  12. [12] R. J. Cook, Pairs of additive congruences: cubic congruences, Mathematika 32 (1985), 286-300. Zbl0586.10012
  13. [13] R. J. Cook, Simultaneous additive congruences, Kon. Norske Vidensk. Selsk. Skr. 5 (1985), 1-7. 
  14. [14] H. Davenport and D. J. Lewis, Homogeneous additive equations, Proc. Roy. Soc. London A274 (1963), 443-460. Zbl0118.28002
  15. [15] H. Davenport and D. J. Lewis, Cubic equations of additive type, Philos. Trans. Roy. Soc. London A261 (1966), 97-136. Zbl0227.10038
  16. [16] H. Davenport and D. J. Lewis, Two additive equations, in: Proc. Sympos. Pure Math. 12, Amer. Math. Soc., 1967, 74-98. 
  17. [17] H. Davenport and D. J. Lewis, Simultaneous equations of additive type, Philos. Trans. Roy. Soc. London A264 (1969), 557-595. Zbl0207.35304
  18. [18] M. M. Dodson, Homogeneous additive congruences, Philos. Trans. Roy. Soc. London A261 (1966), 163-210. 
  19. [19] D. J. Lewis, Cubic congruences, Michigan Math. J. 4 (1957), 85-95. Zbl0077.05101
  20. [20] L. Low, J. Pitman and A. Wolff, Simultaneous additive congruences, J. Number Theory 29 (1988), 31-59. Zbl0643.10011
  21. [21] E. Stevenson, The Artin conjecture for three diagonal cubic forms, J. Number Theory 14 (1982), 374-390. Zbl0488.10022
  22. [22] R. C. Vaughan, On pairs of additive cubic equations, Proc. London Math. Soc. (3) 34 (1977), 354-364. Zbl0341.10044
  23. [23] R. C. Vaughan, The Hardy-Littlewood Method, University Press, Cambridge 1981. Zbl0455.10034
  24. [24] R. C. Vaughan, On Waring's problem for cubes, J. Reine Angew. Math. 365 (1986), 122-170. Zbl0574.10046
  25. [25] R. C. Vaughan, A new iterative method in Waring's problem, ActaMath. 162 (1989), 1-71. Zbl0665.10033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.