Page 1 Next

Displaying 1 – 20 of 181

Showing per page

A short intervals result for linear equations in two prime variables.

M. B. S. Laporta (1997)

Revista Matemática de la Universidad Complutense de Madrid

Given A and B integers relatively prime, we prove that almost all integers n in an interval of the form [N, N+H], where N exp(1/3+e) ≤ H ≤ N can be written as a sum Ap1 + Bp2 = n, with p1 and p2 primes and e an arbitrary positive constant. This generalizes the results of Perelli et al. (1985) established in the classical case A=B=1 (Goldbach's problem).

A ternary Diophantine inequality over primes

Roger Baker, Andreas Weingartner (2014)

Acta Arithmetica

Let 1 < c < 10/9. For large real numbers R > 0, and a small constant η > 0, the inequality | p c + p c + p c - R | < R - η holds for many prime triples. This improves work of Kumchev [Acta Arith. 89 (1999)].

Currently displaying 1 – 20 of 181

Page 1 Next