On the magnitude of asymptotic probability measures of Dedekind zeta-functions and other Euler products

Kohji Matsumoto

Acta Arithmetica (1991)

  • Volume: 60, Issue: 2, page 125-147
  • ISSN: 0065-1036

How to cite

top

Kohji Matsumoto. "On the magnitude of asymptotic probability measures of Dedekind zeta-functions and other Euler products." Acta Arithmetica 60.2 (1991): 125-147. <http://eudml.org/doc/206429>.

@article{KohjiMatsumoto1991,
author = {Kohji Matsumoto},
journal = {Acta Arithmetica},
keywords = {Montgomery's inequality; sums of independent random variables; Dedekind zeta-functions; zeta-functions associated with certain cusp forms},
language = {eng},
number = {2},
pages = {125-147},
title = {On the magnitude of asymptotic probability measures of Dedekind zeta-functions and other Euler products},
url = {http://eudml.org/doc/206429},
volume = {60},
year = {1991},
}

TY - JOUR
AU - Kohji Matsumoto
TI - On the magnitude of asymptotic probability measures of Dedekind zeta-functions and other Euler products
JO - Acta Arithmetica
PY - 1991
VL - 60
IS - 2
SP - 125
EP - 147
LA - eng
KW - Montgomery's inequality; sums of independent random variables; Dedekind zeta-functions; zeta-functions associated with certain cusp forms
UR - http://eudml.org/doc/206429
ER -

References

top
  1. [1] H. Bohr und B. Jessen, Über die Wertverteilung der Riemannschen Zetafunktion, Erste Mitteilung, Acta Math. 54 (1930), 1-35; Zweite Mitteilung, Acta Math. 58 (1932), 1-55. Zbl56.0287.01
  2. [2] K. Chandrasekharan and R. Narasimhan, The approximate functional equation for a class of zeta-functions, Math. Ann. 152 (1963), 30-64. Zbl0116.27001
  3. [3] T. Hattori and K. Matsumoto, Large deviations of Montgomery type and its application to the theory of zeta-functions, preprint. Zbl0818.11032
  4. [4] B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), 48-88. 
  5. [5] D. Joyner, Distribution Theorems of L-functions, Longman Scientific & Technical, 1986. 
  6. [6] K. Matsumoto, A probabilistic study on the value-distribution of Dirichlet series attached to certain cusp forms, Nagoya Math. J. 116 (1989), 123-138. Zbl0675.10017
  7. [7] K. Matsumoto, Value-distribution of zeta-functions, in: Analytic Number Theory , Proceedings of the Japanese-French Symposium held in Tokyo, Oct. 10-13, 1988, K. Nagasaka and E. Fouvry (eds.), Lecture Notes in Math. 1434, Springer, 1990, 178-187. 
  8. [8] K. Matsumoto, Asymptotic probability measures of zeta-functions of algebraic number fields, J. Number Theory, to appear. Zbl0746.11051
  9. [9] H. L. Montgomery, The zeta function and prime numbers, in: Proceedings of the Queen's Number Theory Conference, 1979, P. Ribenboim (ed.), Queen's Papers in Pure and Appl. Math. 54, Queen's Univ., Kingston, Ont., 1980, 1-31. 
  10. [10] H. L. Montgomery and A. M. Odlyzko, Large deviations of sums of independent random variables, Acta Arith. 49 (1988), 427-434. Zbl0641.60032
  11. [11] E. M. Nikishin, Dirichlet series with independent exponents and some of their applications, Mat. Sb. 96 (138) (1975), 3-40 = Math. USSR-Sb. 25 (1975), 1-36. 
  12. [12] H. S. A. Potter, The mean values of certain Dirichlet series I, Proc. London Math. Soc. 46 (1940), 467-478. Zbl66.0340.01
  13. [13] R. A. Rankin, Sums of powers of cusp form coefficients II, Math. Ann. 272 (1985), 593-600 Zbl0556.10018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.