Finding integers k for which a given Diophantine equation has no solution in kth powers of integers

Andrew Granville

Acta Arithmetica (1992)

  • Volume: 60, Issue: 3, page 203-212
  • ISSN: 0065-1036

How to cite


Andrew Granville. "Finding integers k for which a given Diophantine equation has no solution in kth powers of integers." Acta Arithmetica 60.3 (1992): 203-212. <>.

author = {Andrew Granville},
journal = {Acta Arithmetica},
language = {eng},
number = {3},
pages = {203-212},
title = {Finding integers k for which a given Diophantine equation has no solution in kth powers of integers},
url = {},
volume = {60},
year = {1992},

AU - Andrew Granville
TI - Finding integers k for which a given Diophantine equation has no solution in kth powers of integers
JO - Acta Arithmetica
PY - 1992
VL - 60
IS - 3
SP - 203
EP - 212
LA - eng
UR -
ER -


  1. [AHB] L. M. Adleman and D. R. Heath-Brown, The first case of Fermat's last theorem, Invent. Math. 79 (1985), 409-416. Zbl0557.10034
  2. [An] N. C. Ankeny, The insolubility of sets of Diophantine equations in the rational numbers, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 880-884. Zbl0047.27602
  3. [AE] N. C. Ankeny and P. Erdős, The insolubility of classes of Diophantine equations, Amer. J. Math. 76 (1954), 488-496. Zbl0056.03505
  4. [BM] W. D. Brownawell and D. W. Masser, Vanishing sums in function fields, Math. Proc. Cambridge Philos. Soc. 100 (1986), 427-434. Zbl0612.10010
  5. [Ch] V. Chvátal, Linear Programming, Freeman, New York 1983. 
  6. [CJ] J. H. Conway and A. J. Jones, Trigonometric diophantine equations (On vanishing sums of roots of unity), Acta Arith. 30 (1976), 229-240. Zbl0349.10014
  7. [DL] H. Davenport and D. J. Lewis, Homogeneous additive equations, Proc. Royal Soc. Ser. A 274 (1963), 443-460. Zbl0118.28002
  8. [Fa] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366, Erratum, Proc. Royal Soc. Ser. A 75 (1984), 381. 
  9. [Fo] E. Fouvry, Théorème de Brun-Titchmarsh; application au théorème de Fermat, Proc. Royal Soc. Ser. A 79 (1985), 383-407. Zbl0557.10035
  10. [G1] A. Granville, Diophantine equations with varying exponents (with special reference to Fermat's Last Theorem), Doctoral thesis, Queen's University, Kingston, Ontario, 1987, 209 pp. 
  11. [G2] A. Granville, Some conjectures in Analytic Number Theory and their connection with Fermat's Last Theorem, in: Analytic Number Theory, B. C. Brendt, H. G. Diamond, H. Halberstam, A. Hildebrand (eds.) Birkhäuser, Boston 1990, 311-326. 
  12. [G3] A. Granville, The set of exponents for which Fermat's Last Theorem is true, has density one, C. R. Math. Acad. Sci. Canada 7 (1985), 55-60. Zbl0565.10016
  13. [HB] D. R. Heath-Brown, Fermat's Last Theorem for ``almost all'' exponents, Bull. London Math. Soc. 17 (1985), 15-16. Zbl0546.10012
  14. [L] H. W. Lenstra,Jr., Vanishing sums of roots of unity, in: Proc. Bicentennial Cong. Wiskundig Genootschap, Vrije Univ., Amsterdam 1978, 249-268. 
  15. [M] H. B. Mann, On linear relations between roots of unity, Mathematika 12 (1965), 107-117. Zbl0138.03102
  16. [NS] D. J. Newman and M. Slater, Waring's problem for the ring of polynomials, J. Number Theory 11 (1979), 477-487. Zbl0407.10039
  17. [Ri] P. Ribenboim, An extension of Sophie Germain's method to a wide class of diophantine equations, J. Reine Angew. Math. 356 (1985), 49-66. Zbl0546.10013
  18. [V] H. S. Vandiver, On classes of Diophantine equations of higher degrees which have no solutions, Proc. Nat. Acad. Sci., U.S.A. 32 (1946), 101-106. Zbl0063.07966

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.