Displaying similar documents to “Finding integers k for which a given Diophantine equation has no solution in kth powers of integers”

Variants of the Brocard-Ramanujan equation

Omar Kihel, Florian Luca (2008)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper, we discuss variations on the Brocard-Ramanujan Diophantine equation.

On rough and smooth neighbors.

William D. Banks, Florian Luca, Igor E. Shparlinski (2007)

Revista Matemática Complutense

Similarity:

We study the behavior of the arithmetic functions defined by F(n) = P+(n) / P-(n+1) and G(n) = P+(n+1) / P-(n) (n ≥ 1) where P+(k) and P-(k) denote the largest and the smallest prime factors, respectively, of the positive integer k.

Practical Aurifeuillian factorization

Bill Allombert, Karim Belabas (2008)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We describe a simple procedure to find Aurifeuillian factors of values of cyclotomic polynomials Φ d ( a ) for integers a and d > 0 . Assuming a suitable Riemann Hypothesis, the algorithm runs in deterministic time O ˜ ( d 2 L ) , using O ( d L ) space, where L log ( a + 1 ) .