When the group-counting function assumes a prescribed integer value at squarefree integers frequently, but not extremely frequently

Claudia A. Spiro-Silverman

Acta Arithmetica (1992)

  • Volume: 61, Issue: 1, page 1-12
  • ISSN: 0065-1036

How to cite

top

Claudia A. Spiro-Silverman. "When the group-counting function assumes a prescribed integer value at squarefree integers frequently, but not extremely frequently." Acta Arithmetica 61.1 (1992): 1-12. <http://eudml.org/doc/206449>.

@article{ClaudiaA1992,
author = {Claudia A. Spiro-Silverman},
journal = {Acta Arithmetica},
keywords = {group-counting; squarefree order; lower bound; finite groups; number of non-isomorphic groups; asymptotic results},
language = {eng},
number = {1},
pages = {1-12},
title = {When the group-counting function assumes a prescribed integer value at squarefree integers frequently, but not extremely frequently},
url = {http://eudml.org/doc/206449},
volume = {61},
year = {1992},
}

TY - JOUR
AU - Claudia A. Spiro-Silverman
TI - When the group-counting function assumes a prescribed integer value at squarefree integers frequently, but not extremely frequently
JO - Acta Arithmetica
PY - 1992
VL - 61
IS - 1
SP - 1
EP - 12
LA - eng
KW - group-counting; squarefree order; lower bound; finite groups; number of non-isomorphic groups; asymptotic results
UR - http://eudml.org/doc/206449
ER -

References

top
  1. [1] P. Erdős, Some asymptotic formulas in number theory, J. Indian Math. Soc. 12 (1948), 75-78. Zbl0041.36807
  2. [2] P. Erdős, M. R. Murty, and V. K. Murty, On the enumeration of finite groups, J. Number Theory 25 (1987), 360-378. Zbl0612.10038
  3. [3] H. Halberstam and H.-E. Richert, Sieve Methods, London Math. Soc. Monographs 4, Academic Press, London 1974. Zbl0298.10026
  4. [4] H. Halberstam and K. F. Roth, Sequences, Springer, New York 1983. 
  5. [5] O. Hölder, Die Gruppen mit quadratfreier Ordnungszahl, Nach. Königl. Gessell. der Wiss. Göttingen Math.-Phys. Kl. 1895, 211-229. Zbl26.0162.01
  6. [6] Yu. V. Linnik, On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon, Mat. Sb. (N.S.) 15 (57) (1944), 347-368. Zbl0063.03585
  7. [7] M.-G. Lu, The asymptotic formula for F₂(x), Sci. Sinica Ser. A 30 (1987), 262-278. 
  8. [8] M. R. Murty and V. K. Murty, On the number of groups of a given order, J. Number Theory 18 (1984), 178-191. Zbl0531.10047
  9. [9] K. K. Norton, On the number of restricted prime factors of an integer. I, Illinois J. Math. 20 (1976), 681-705. Zbl0329.10035
  10. [10] C. A. Spiro, The probability that the number of groups of squarefree order is two more than a fixed prime, Proc. London Math. Soc. 60 (1990), 444-470. Zbl0707.11066
  11. [11] T. Szele, Über die endlichen Ordnungszahlen, zu denen nur eine Gruppe gehört, Comment. Math. Helv. 20 (1947), 265-267. Zbl0034.30502
  12. [12] J. Szép, On finite groups which are necessarily commutative, Comment. Math. Helv., 223-224. Zbl0035.01502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.