Groups of cubefree order
Acta Arithmetica (1995)
- Volume: 71, Issue: 3, page 209-227
- ISSN: 0065-1036
Access Full Article
topHow to cite
topClaudia Spiro-Silverman. "Groups of cubefree order." Acta Arithmetica 71.3 (1995): 209-227. <http://eudml.org/doc/206770>.
@article{ClaudiaSpiro1995,
author = {Claudia Spiro-Silverman},
journal = {Acta Arithmetica},
keywords = {group-counting function; arithmetic function; lower bound},
language = {eng},
number = {3},
pages = {209-227},
title = {Groups of cubefree order},
url = {http://eudml.org/doc/206770},
volume = {71},
year = {1995},
}
TY - JOUR
AU - Claudia Spiro-Silverman
TI - Groups of cubefree order
JO - Acta Arithmetica
PY - 1995
VL - 71
IS - 3
SP - 209
EP - 227
LA - eng
KW - group-counting function; arithmetic function; lower bound
UR - http://eudml.org/doc/206770
ER -
References
top- [1] J.-R. Chen and J.-M. Liu, On the least prime in an arithmetical progression (III), (IV), Science in China Ser. A 32 (1989), 654-673, 782-809.
- [2] P. Erdős, Some asymptotic formulas in number theory, J. Indian Math. Soc. 12 (1948), 75-78. Zbl0041.36807
- [3] P. Erdős, M. R. Murty and V. K. Murty, On the enumeration of finite groups, J. Number Theory 25 (1987), 360-378. Zbl0612.10038
- [4] D. Gorenstein, Finite Groups, Series in Modern Mathematics, Harper and Row, New York, 1968, xv+527.
- [5] M. Hall, The Theory of Groups, Twelfth Printing, The Macmillan Company, New York, 1973, xiv+434.
- [6] D. R. Heath-Brown, Zero-free regions for Dirichlet's L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. 64 (1992), 265-338. Zbl0739.11033
- [7] Yu. V. Linnik, On the least prime in an arithmetic progression. II. The Deuring-Heilbronn Phenomenon, Rec. Math. [Math. Sbornik] N.S. 15 (57) (1994), 345-368.
- [8] M.-G. Lu, The asymptotic formula for F₂(x), Sci. Sinica Ser. A 30 (1987), 262-278.
- [9] M. R. Murty and V. K. Murty, On the number of groups of a given order, J. Number Theory 18 (1984), 178-191. Zbl0531.10047
- [10] C. A. Spiro, The probability that the number of groups of squarefree order is two more than a fixed prime, Proc. London Math. Soc. 60 (1990), 444-470. Zbl0707.11066
- [11] C. A. Spiro-Silverman, When the group-counting function assumes a prescribed integer value at squarefree integers frequently, but not extremely frequently, Acta Arith. 61 (1992), 1-12. Zbl0747.11039
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.