The divisor problem for arithmetic progressions with small modulus

Charles E. Chace

Acta Arithmetica (1992)

  • Volume: 61, Issue: 1, page 35-50
  • ISSN: 0065-1036

How to cite

top

Charles E. Chace. "The divisor problem for arithmetic progressions with small modulus." Acta Arithmetica 61.1 (1992): 35-50. <http://eudml.org/doc/206450>.

@article{CharlesE1992,
author = {Charles E. Chace},
journal = {Acta Arithmetica},
keywords = {number of ordered -tuples; divisor problem; remainder},
language = {eng},
number = {1},
pages = {35-50},
title = {The divisor problem for arithmetic progressions with small modulus},
url = {http://eudml.org/doc/206450},
volume = {61},
year = {1992},
}

TY - JOUR
AU - Charles E. Chace
TI - The divisor problem for arithmetic progressions with small modulus
JO - Acta Arithmetica
PY - 1992
VL - 61
IS - 1
SP - 35
EP - 50
LA - eng
KW - number of ordered -tuples; divisor problem; remainder
UR - http://eudml.org/doc/206450
ER -

References

top
  1. [C] C. E. Chace, Writing integers as sums of products, doctoral dissertation, Colum- bia University, 1990. 
  2. [FI1] J. B. Friedlander and H. Iwaniec, The divisor problem for arithmetic progressions, Acta Arith. 45 (1985), 273-277. Zbl0572.10033
  3. [FI2] J. B. Friedlander and H. Iwaniec, Incomplete Kloosterman sums and a divisor problem, Ann. of Math. 121 (1985), 319-350. Zbl0572.10029
  4. [H1] D. R. Heath-Brown, Hybrid bounds for Dirichlet L-functions, Invent. Math. 47 (1978), 149-170. Zbl0362.10035
  5. [H2] D. R. Heath-Brown, The fourth power moment of the Riemann zeta function, Proc. London Math. Soc. (3) 38 (1979), 385-422. Zbl0403.10018
  6. [H3] D. R. Heath-Brown, The divisor function d₃(n) in arithmetic progressions, Acta Arith. 47 (1987), 29-56. 
  7. [K] H. G. Kopetzky, Über die Größ enordnung der Teilerfunktion in Restklassen, Monatsh. Math. 82 (1976), 287-295. Zbl0347.10036
  8. [L1] A. F. Lavrik, A functional equation for Dirichlet L-series and the problem of divisors in arithmetic progressions, Amer. Math. Soc. Transl. (2) 82 (1969), 47-65. Zbl0188.34801
  9. [L2] A. F. Lavrik, On the principal term in the divisor problem and the power series of the Riemann zeta-function in a neighborhood of its pole, English transl. in Proc. Steklov Inst. Math. 1979, no. 3, 175-183. 
  10. [Ma] K. Matsumoto, A remark on Smith's result on a divisor problem in arithmetic progressions, Nagoya Math. J. 98 (1985), 37-42. Zbl0545.10032
  11. [Mn] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, 1971. 
  12. [Mo] Y. Motohashi, An asymptotic series for an additive divisor problem, Math. Z. 170 (1980), 43-63. Zbl0411.10021
  13. [N] W. G. Nowak, On the divisor problem in arithmetic progressions, Comment. Math. Univ. St. Pauli 33 (1984), 209-217. Zbl0512.10035
  14. [P] M. M. Petečuk, The sum of values of the divisor function in arithmetic progressions whose difference is a power of an odd prime, Math. USSR-Izv. 15 (1980), 145-160. 
  15. [S] R. A. Smith, The generalized divisor problem over arithmetic progressions, Math. Ann. 260 (1982), 255-268. Zbl0467.10034
  16. [T] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. revised by D. R. Heath-Brown, Clarendon Press, Oxford 1986. Zbl0601.10026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.