Sum of higher divisor function with prime summands
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 2, page 621-631
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDing, Yuchen, and Zhou, Guang-Liang. "Sum of higher divisor function with prime summands." Czechoslovak Mathematical Journal 73.2 (2023): 621-631. <http://eudml.org/doc/299504>.
@article{Ding2023,
abstract = {Let $l\geqslant 2$ be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function \[ \sum \_\{1\leqslant n\_\{1\},n\_\{2\},\ldots ,n\_\{l\}\leqslant x^\{1/2\}\}\tau \_\{k\}(n\_\{1\}^\{2\}+n\_\{2\}^\{2\}+\cdots +n\_\{l\}^\{2\}), \]
where $\tau _\{k\}(n)$ represents the $k$th divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum \[ \sum \_\{1\leqslant p\_\{1\},p\_\{2\},\ldots ,p\_\{l\}\leqslant x\}\tau \_\{k\}(p\_\{1\}+p\_\{2\}+\cdots +p\_\{l\}), \]
where $p_1,p_2,\dots ,p_l$ are prime variables.},
author = {Ding, Yuchen, Zhou, Guang-Liang},
journal = {Czechoslovak Mathematical Journal},
keywords = {higher divisor function; circle method; prime},
language = {eng},
number = {2},
pages = {621-631},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sum of higher divisor function with prime summands},
url = {http://eudml.org/doc/299504},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Ding, Yuchen
AU - Zhou, Guang-Liang
TI - Sum of higher divisor function with prime summands
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 621
EP - 631
AB - Let $l\geqslant 2$ be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function \[ \sum _{1\leqslant n_{1},n_{2},\ldots ,n_{l}\leqslant x^{1/2}}\tau _{k}(n_{1}^{2}+n_{2}^{2}+\cdots +n_{l}^{2}), \]
where $\tau _{k}(n)$ represents the $k$th divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum \[ \sum _{1\leqslant p_{1},p_{2},\ldots ,p_{l}\leqslant x}\tau _{k}(p_{1}+p_{2}+\cdots +p_{l}), \]
where $p_1,p_2,\dots ,p_l$ are prime variables.
LA - eng
KW - higher divisor function; circle method; prime
UR - http://eudml.org/doc/299504
ER -
References
top- Bellman, R., 10.1215/S0012-7094-50-01717-0, Duke Math. J. 17 (1950), 159-168. (1950) Zbl0037.31202MR0035312DOI10.1215/S0012-7094-50-01717-0
- Calderón, C., Velasco, M. J. de, 10.1007/BF01377596, Bol. Soc. Bras. Mat., Nova Sér. 31 (2000), 81-91. (2000) Zbl1031.11057MR1754956DOI10.1007/BF01377596
- Chace, C. E., 10.4064/aa-61-1-35-50, Acta Arith. 61 (1992), 35-50. (1992) Zbl0726.11056MR1153920DOI10.4064/aa-61-1-35-50
- Chace, C. E., 10.1090/S0002-9947-1994-1257641-3, Trans. Am. Math. Soc. 345 (1994), 367-379. (1994) Zbl0811.11061MR1257641DOI10.1090/S0002-9947-1994-1257641-3
- Gafurov, N., On the sum of the number of divisors of a quadratic form, Dokl. Akad. Nauk Tadzh. SSR 28 (1985), 371-375 Russian. (1985) Zbl0586.10023MR0819343
- Gafurov, N., On the number of divisors of a quadratic form, Proc. Steklov Inst. Math. 200 (1993), 137-148. (1993) Zbl0790.11073MR1143362
- Guo, R., Zhai, W., 10.4064/aa156-2-1, Acta Arith. 156 (2012), 101-121. (2012) Zbl1270.11099MR2997561DOI10.4064/aa156-2-1
- Hooley, C., 10.1007/BF01187402, Math. Z. 69 (1958), 211-227. (1958) Zbl0081.03904MR0096624DOI10.1007/BF01187402
- Hooley, C., 10.1007/BF02391856, Acta Math. 110 (1963), 97-114. (1963) Zbl0116.03802MR0153648DOI10.1007/BF02391856
- Hu, G., Lü, G., 10.1016/j.jnt.2020.08.009, J. Number Theory 220 (2021), 61-74. (2021) Zbl1466.11065MR4177535DOI10.1016/j.jnt.2020.08.009
- Ingham, A. E., 10.1112/jlms/s1-2.3.202, J. Lond. Math. Soc. 2 (1927), 202-208 9999JFM99999 53.0157.01. (1927) MR1574426DOI10.1112/jlms/s1-2.3.202
- Montgomery, H. L., Vaughan, R. C., 10.4064/aa-27-1-353-370, Acta Arith. 27 (1975), 353-370. (1975) Zbl0301.10043MR0374063DOI10.4064/aa-27-1-353-370
- Nathanson, M. B., 10.1007/978-1-4757-3845-2, Graduate Texts in Mathematics 164. Springer, New York (1996). (1996) Zbl0859.11002MR1395371DOI10.1007/978-1-4757-3845-2
- Shiu, P., 10.1515/crll.1980.313.161, J. Reine Angew. Math. 313 (1980), 161-170. (1980) Zbl0412.10030MR0552470DOI10.1515/crll.1980.313.161
- Sun, Q., Zhang, D., 10.1016/j.jnt.2016.04.010, J. Number Theory 168 (2016), 215-246. (2016) Zbl1396.11117MR3515816DOI10.1016/j.jnt.2016.04.010
- Zhao, L., 10.4064/aa163-2-6, Acta Arith. 163 (2014), 161-177. (2014) Zbl1346.11056MR3200169DOI10.4064/aa163-2-6
- Zhou, G.-L., Ding, Y., 10.1007/s11139-022-00579-z, Ramanujan J. 59 (2022), 933-945. (2022) Zbl1498.11200MR4496536DOI10.1007/s11139-022-00579-z
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.