Sum of higher divisor function with prime summands

Yuchen Ding; Guang-Liang Zhou

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 621-631
  • ISSN: 0011-4642

Abstract

top
Let l 2 be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function 1 n 1 , n 2 , ... , n l x 1 / 2 τ k ( n 1 2 + n 2 2 + + n l 2 ) , where τ k ( n ) represents the k th divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum 1 p 1 , p 2 , ... , p l x τ k ( p 1 + p 2 + + p l ) , where p 1 , p 2 , , p l are prime variables.

How to cite

top

Ding, Yuchen, and Zhou, Guang-Liang. "Sum of higher divisor function with prime summands." Czechoslovak Mathematical Journal 73.2 (2023): 621-631. <http://eudml.org/doc/299504>.

@article{Ding2023,
abstract = {Let $l\geqslant 2$ be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function \[ \sum \_\{1\leqslant n\_\{1\},n\_\{2\},\ldots ,n\_\{l\}\leqslant x^\{1/2\}\}\tau \_\{k\}(n\_\{1\}^\{2\}+n\_\{2\}^\{2\}+\cdots +n\_\{l\}^\{2\}), \] where $\tau _\{k\}(n)$ represents the $k$th divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum \[ \sum \_\{1\leqslant p\_\{1\},p\_\{2\},\ldots ,p\_\{l\}\leqslant x\}\tau \_\{k\}(p\_\{1\}+p\_\{2\}+\cdots +p\_\{l\}), \] where $p_1,p_2,\dots ,p_l$ are prime variables.},
author = {Ding, Yuchen, Zhou, Guang-Liang},
journal = {Czechoslovak Mathematical Journal},
keywords = {higher divisor function; circle method; prime},
language = {eng},
number = {2},
pages = {621-631},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sum of higher divisor function with prime summands},
url = {http://eudml.org/doc/299504},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Ding, Yuchen
AU - Zhou, Guang-Liang
TI - Sum of higher divisor function with prime summands
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 621
EP - 631
AB - Let $l\geqslant 2$ be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function \[ \sum _{1\leqslant n_{1},n_{2},\ldots ,n_{l}\leqslant x^{1/2}}\tau _{k}(n_{1}^{2}+n_{2}^{2}+\cdots +n_{l}^{2}), \] where $\tau _{k}(n)$ represents the $k$th divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum \[ \sum _{1\leqslant p_{1},p_{2},\ldots ,p_{l}\leqslant x}\tau _{k}(p_{1}+p_{2}+\cdots +p_{l}), \] where $p_1,p_2,\dots ,p_l$ are prime variables.
LA - eng
KW - higher divisor function; circle method; prime
UR - http://eudml.org/doc/299504
ER -

References

top
  1. Bellman, R., 10.1215/S0012-7094-50-01717-0, Duke Math. J. 17 (1950), 159-168. (1950) Zbl0037.31202MR0035312DOI10.1215/S0012-7094-50-01717-0
  2. Calderón, C., Velasco, M. J. de, 10.1007/BF01377596, Bol. Soc. Bras. Mat., Nova Sér. 31 (2000), 81-91. (2000) Zbl1031.11057MR1754956DOI10.1007/BF01377596
  3. Chace, C. E., 10.4064/aa-61-1-35-50, Acta Arith. 61 (1992), 35-50. (1992) Zbl0726.11056MR1153920DOI10.4064/aa-61-1-35-50
  4. Chace, C. E., 10.1090/S0002-9947-1994-1257641-3, Trans. Am. Math. Soc. 345 (1994), 367-379. (1994) Zbl0811.11061MR1257641DOI10.1090/S0002-9947-1994-1257641-3
  5. Gafurov, N., On the sum of the number of divisors of a quadratic form, Dokl. Akad. Nauk Tadzh. SSR 28 (1985), 371-375 Russian. (1985) Zbl0586.10023MR0819343
  6. Gafurov, N., On the number of divisors of a quadratic form, Proc. Steklov Inst. Math. 200 (1993), 137-148. (1993) Zbl0790.11073MR1143362
  7. Guo, R., Zhai, W., 10.4064/aa156-2-1, Acta Arith. 156 (2012), 101-121. (2012) Zbl1270.11099MR2997561DOI10.4064/aa156-2-1
  8. Hooley, C., 10.1007/BF01187402, Math. Z. 69 (1958), 211-227. (1958) Zbl0081.03904MR0096624DOI10.1007/BF01187402
  9. Hooley, C., 10.1007/BF02391856, Acta Math. 110 (1963), 97-114. (1963) Zbl0116.03802MR0153648DOI10.1007/BF02391856
  10. Hu, G., Lü, G., 10.1016/j.jnt.2020.08.009, J. Number Theory 220 (2021), 61-74. (2021) Zbl1466.11065MR4177535DOI10.1016/j.jnt.2020.08.009
  11. Ingham, A. E., 10.1112/jlms/s1-2.3.202, J. Lond. Math. Soc. 2 (1927), 202-208 9999JFM99999 53.0157.01. (1927) MR1574426DOI10.1112/jlms/s1-2.3.202
  12. Montgomery, H. L., Vaughan, R. C., 10.4064/aa-27-1-353-370, Acta Arith. 27 (1975), 353-370. (1975) Zbl0301.10043MR0374063DOI10.4064/aa-27-1-353-370
  13. Nathanson, M. B., 10.1007/978-1-4757-3845-2, Graduate Texts in Mathematics 164. Springer, New York (1996). (1996) Zbl0859.11002MR1395371DOI10.1007/978-1-4757-3845-2
  14. Shiu, P., 10.1515/crll.1980.313.161, J. Reine Angew. Math. 313 (1980), 161-170. (1980) Zbl0412.10030MR0552470DOI10.1515/crll.1980.313.161
  15. Sun, Q., Zhang, D., 10.1016/j.jnt.2016.04.010, J. Number Theory 168 (2016), 215-246. (2016) Zbl1396.11117MR3515816DOI10.1016/j.jnt.2016.04.010
  16. Zhao, L., 10.4064/aa163-2-6, Acta Arith. 163 (2014), 161-177. (2014) Zbl1346.11056MR3200169DOI10.4064/aa163-2-6
  17. Zhou, G.-L., Ding, Y., 10.1007/s11139-022-00579-z, Ramanujan J. 59 (2022), 933-945. (2022) Zbl1498.11200MR4496536DOI10.1007/s11139-022-00579-z

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.