Hans Rademacher (1892-1969)

Bruce C. Berndt

Acta Arithmetica (1992)

  • Volume: 61, Issue: 3, page 209-225
  • ISSN: 0065-1036

How to cite

top

Bruce C. Berndt. "Hans Rademacher (1892-1969)." Acta Arithmetica 61.3 (1992): 209-225. <http://eudml.org/doc/206463>.

@article{BruceC1992,
author = {Bruce C. Berndt},
journal = {Acta Arithmetica},
keywords = {biography},
language = {eng},
number = {3},
pages = {209-225},
title = {Hans Rademacher (1892-1969)},
url = {http://eudml.org/doc/206463},
volume = {61},
year = {1992},
}

TY - JOUR
AU - Bruce C. Berndt
TI - Hans Rademacher (1892-1969)
JO - Acta Arithmetica
PY - 1992
VL - 61
IS - 3
SP - 209
EP - 225
LA - eng
KW - biography
UR - http://eudml.org/doc/206463
ER -

References

top
  1. [1] L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938), 359-364. Zbl64.0315.04
  2. [2] G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976. Zbl0371.10001
  3. [3] A. O. L. Atkin, Proof of a conjecture of Ramanujan, Glasgow Math. J. 8 (1967), 67-78. Zbl0163.04302
  4. [4] B. C. Berndt, Generalized Dedekind eta-functions and generalized Dedekind sums, Trans. Amer. Math. Soc. 178 (1973), 495-508. Zbl0262.10015
  5. [5] B. C. Berndt, Generalized Eisenstein series and modified Dedekind sums, J. Reine Angew. Math. 272 (1975), 182-193. Zbl0294.10018
  6. [6] B. C. Berndt, Reciprocity theorems for Dedekind sums and generalizations, Adv. in Math. 23 (1977), 285-316. Zbl0342.10014
  7. [7] B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 304 (1978), 332-365. Zbl0384.10011
  8. [8] R. W. Bruggeman, Dedekind sums and Fourier coefficients of modular forms, J. Number Theory 36 (1990), 289-321. Zbl0723.11018
  9. [9] Y. Chuman, Generators and relations of Γ₀(N), J. Math. Kyoto Univ. 13 (1973), 381-390. 
  10. [10] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, New York 1980. Zbl0453.10002
  11. [11] R. Dedekind, Erläuterungen zu zwei Fragmenten von Riemann, in: Gesammelte Mathematische Werke, Friedr. Vieweg & Sohn, Braunschweig 1930, 159-172. 
  12. [12] H. Frasch, Die Erzeugenden der Hauptkongruenzgruppen für Primzahlstufen, Math. Ann. 108 (1933), 229-252. Zbl59.0146.04
  13. [13] L. A. Goldberg, Transformations of Theta-functions and Analogues of Dedekind Sums, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 1981. 
  14. [14] E. Grosswald, On the structure of some subgroups of the modular group, Amer. J. Math. 72 (1950), 809-834. Zbl0040.30003
  15. [15] E. Grosswald, On the parabolic generators of the principal congruence subgroups of the modular group, Amer. J. Math. 74 (1952), 435-443. Zbl0046.31202
  16. [16] E. Grosswald, An orthonormal system and its Lebesgue constants, in: Analytic Number Theory, M. I. Knopp (ed.), Lecture Notes in Math. 899, Springer, Berlin 1981, 2-9. Zbl0476.01004
  17. [17] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, New York 1974. Zbl0298.10026
  18. [18] G. H. Hardy, Collected Papers, Vol. 1, Clarendon Press, Oxford 1966. 
  19. [19] G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approximation. I. The fractional part of n k θ , Acta Math. 37 (1914), 155-191. Zbl45.0305.03
  20. [20] G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio Numerorum'; III: On the expression of a number as a sum of primes, Acta Math. 44 (1922), 1-70. Zbl48.0143.04
  21. [21] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. (2) 17 (1918), 75-115. Zbl46.0198.04
  22. [22] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. Zweite Mitteilung, Math. Z. 6 (1920), 11-51. 
  23. [23] E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktenwicklung. I, Math. Ann. 114 (1937), 1-28. Zbl0015.40202
  24. [24] E. Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen 1970. 
  25. [25] D. R. Hickerson, Continued fractions and density results for Dedekind sums, J. Reine Angew. Math. 290 (1977), 113-116. Zbl0341.10012
  26. [26] F. John, Identitäten zwischen dem Integral einer willkürlichen Funktion und unendlichen Reihen, Math. Ann. 110 (1935), 718-721. Zbl61.0247.01
  27. [27] M. Knopp, Modular Functions in Analytic Number Theory, Markham, Chicago 1970. 
  28. [28] M. Knopp, Rademacher on J(τ), Poincaré series of nonpositive weights and the Eichler cohomology, Notices Amer. Math. Soc. 37 (1990), 385-393. 
  29. [29] O. Körner, Übertragung des Goldbach-Vinogradovschen Satzes auf reell-quadratische Zahlkörper, Math. Ann. 141 (1960), 343-366. Zbl0099.03602
  30. [30] O. Körner, Erweiterter Goldbach-Vinogradovscher Satz in beliebigen algebraischen Zahlkörpern, Math. Ann. 143 (1961), 344-378. Zbl0103.02901
  31. [31] O. Körner, Zur additiven Primzahltheorie algebraischer Zahlkörper, Math. Ann. 144 (1961), 97-109. 
  32. [32] R. S. Kulkarni, An arithmetic-geometric method in the study of the subgroups of the modular group, Amer. J. Math. 113 (1991), 1053-1133. Zbl0758.11024
  33. [33] D. H. Lehmer, The Hardy-Ramanujan series for the partition function, J. London Math. Soc. 12 (1937), 171-176. Zbl0017.05601
  34. [34] D. H. Lehmer, On the series for the partition function, Trans. Amer. Math. Soc. 43 (1938), 271-295. Zbl0018.10703
  35. [35] J. Lehner, Ramanujan identities involving the partition function for the moduli 11 a , Amer. J. Math. 65 (1943), 492-520. Zbl0060.10007
  36. [36] J. Lehner, Proof of Ramanujan's partition congruence for the modulus 11³, Proc. Amer. Math. Soc. 1 (1950), 172-181. Zbl0037.31303
  37. [37] J. Lehner, The Fourier coefficients of automorphic forms belonging to a class of horocyclic groups, Michigan Math. J. 4 (1957), 265-279. Zbl0081.07602
  38. [38] J. Lehner, Partial fraction decompositions and expansions of zero, Trans. Amer. Math. Soc. 87 (1958), 130-143. Zbl0085.29201
  39. [39] J. Lehner, The Fourier coefficients of automorphic forms on horocyclic groups, II, Michigan Math. J. 6 (1959), 173-193. Zbl0085.30003
  40. [40] J. Lehner, The Fourier coefficients of automorphic forms on horocyclic groups, III, Michigan Math. 7 (1960), 65-74. Zbl0093.08202
  41. [41] L. J. Mordell, Lattice points in a tetrahedron and generalized Dedekind sums, J. Indian Math. Soc. 15 (1951), 41-46. Zbl0043.05101
  42. [42] G. Myerson, Dedekind sums and uniform distribution, J. Number Theory 28 (1988), 233-239. Zbl0635.10033
  43. [43] M. Newman, Remarks on some modular identities, Trans. Amer. Math. Soc. 73 (1952), 313-320. Zbl0047.04303
  44. [44] H. Petersson, Über die Entwicklungskoeffizienten der automorphen Formen, Acta Math. 58 (1932), 169-215. Zbl58.1110.01
  45. [45] H. Petersson, Die linearen Relationen zwischen den ganzen Poincaréschen Reihen von reeller Dimension zur Modulgruppe, Abh. Math. Sem. Univ. Hamburg 12 (1938), 415-472. Zbl0019.34403
  46. [46] L. Pinzur, On a question of Rademacher concerning Dedekind sums, Proc. Amer. Math. Soc. 61 (1976), 11-15. Zbl0314.10002
  47. [47] C. Pommerenke, On Bloch functions, J. London Math. Soc. (2) 2 (1970), 689-695. 
  48. [48] J. E. Pommersheim, Lattice points in a tetrahedron and toric varieties ; Dedekind sum relations and toric varieties, submitted for publication. Zbl0789.14043
  49. [49] K. G. Ramanathan, Ramanujan and the congruence properties of partitions, Proc. Indian Acad. Sci. (Math. Sci.) 89 (1980), 133-157. Zbl0447.10016
  50. [50] S. Ramanujan, Collected Papers, Chelsea, New York 1962. 
  51. [51] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi 1988. Zbl0639.01023
  52. [52] B. Riemann, Fragmente über die Grenzfälle der elliptischen Modulfunktionen, in: Gesammelte Mathematische Werke, Dover, New York 1953, 455-465. 
  53. [53] K. H. Rosen, On the sign of some Dedekind sums, J. Number Theory 9 (1977), 209-212. Zbl0349.10005
  54. [54] K. H. Rosen, Lattice points in four-dimensional tetrahedra and a conjecture of Rademacher, J. Reine Angew. Math. 307/308 (1979), 264-275. Zbl0402.10047
  55. [55] L. A. Rubel and E. G. Straus, Special trigonometric series and the Riemann hypothesis, Math. Scand. 18 (1966), 35-44. Zbl0147.02901
  56. [56] W. Schnee, Die Funktionalgleichung der Zetafunktion und der Dirichletschen Reihen mit periodischen Koeffizienten, Math. Z. 31 (1930), 378-390. 
  57. [57] A. Selberg, Reflections around the Ramanujan centenary, in: Collected Papers, Vol. 1, Springer, Berlin 1989, 695-706. 
  58. [58] C. L. Siegel, A simple proof of η(-1/τ)=η(τ)√τ/i, Mathematika 1 (1954), 4. 
  59. [59] J. L. Walsh, A closed set of normal, orthogonal functions, Amer. J. Math. 55 (1923), 5-24. Zbl49.0293.03
  60. [60] G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. 179 (1938), 97-128. Zbl0019.15302
  61. [61] A. Weil, Sur une formule classique, J. Math. Soc. Japan 20 (1968), 400-402. 
  62. [62] A. Whiteman, A sum connected with the series for the partition function, Pacific J. Math. 6 (1956), 159-176. Zbl0071.04004
  63. [63] H. S. Zuckerman, On the coefficients of certain modular forms belonging to subgroups of the modular group, Trans. Amer. Math. Soc. 45 (1939), 298-321. Zbl65.0352.01
  64. [64] H. S. Zuckerman, On the expansions of certain modular forms of positive dimension, Amer. J. Math. 62 (1940), 127-152. Zbl66.0373.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.