Perfect powers in products of terms in an arithmetical progression III

T. N. Shorey; R. Tijdeman

Acta Arithmetica (1992)

  • Volume: 61, Issue: 4, page 391-398
  • ISSN: 0065-1036

How to cite

top

T. N. Shorey, and R. Tijdeman. "Perfect powers in products of terms in an arithmetical progression III." Acta Arithmetica 61.4 (1992): 391-398. <http://eudml.org/doc/206474>.

@article{T1992,
author = {T. N. Shorey, R. Tijdeman},
journal = {Acta Arithmetica},
keywords = {perfect powers in products; exponential diophantine equation; arithmetical progression},
language = {eng},
number = {4},
pages = {391-398},
title = {Perfect powers in products of terms in an arithmetical progression III},
url = {http://eudml.org/doc/206474},
volume = {61},
year = {1992},
}

TY - JOUR
AU - T. N. Shorey
AU - R. Tijdeman
TI - Perfect powers in products of terms in an arithmetical progression III
JO - Acta Arithmetica
PY - 1992
VL - 61
IS - 4
SP - 391
EP - 398
LA - eng
KW - perfect powers in products; exponential diophantine equation; arithmetical progression
UR - http://eudml.org/doc/206474
ER -

References

top
  1. [1] P. Erdős, Note on the product of consecutive integers (I), J. London Math. Soc. 14 (1939), 194-198. Zbl0021.20704
  2. [2] P. Erdős, On the product of consecutive integers III, Indag. Math. 17 (1955), 85-90. Zbl0068.03704
  3. [3] P. Erdős and J. Turk, Products of integers in short intervals, Acta Arith. 44 (1984), 147-174. Zbl0497.10033
  4. [4] J.-H. Evertse, On the equation axⁿ-byⁿ=c, Compositio Math. 47 (1982), 289-315. 
  5. [5] J.-H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to Yⁿ=f(X), Math. Proc. Cambridge Philos. Soc. 100 (1986), 237-248. Zbl0611.10009
  6. [6] T. N. Shorey, On gaps between numbers with a large prime factor II, Acta Arith. 25 (1974), 365-373. Zbl0258.10023
  7. [7] T. N. Shorey, Perfect powers in values of certain polynomials at integer points, Math. Proc. Cambridge Philos. Soc. 99 (1986), 195-207. Zbl0598.10029
  8. [8] T. N. Shorey, Perfect powers in products of integers from a block of consecutive integers, Acta Arith. 49 (1987), 71-79. Zbl0582.10012
  9. [9] T. N. Shorey, Some exponential diophantine equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 217-229. 
  10. [10] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Math. 87, Cambridge University Press, 1986. Zbl0606.10011
  11. [11] T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical progression II, Acta Arith. 53 (1990), 499-504. Zbl0657.10044
  12. [12] T. N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression, Compositio Math. 75 (1990), 307-344. Zbl0708.11021
  13. [13] T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical progression III, in: Diophantine Approximation and Transcendental Numbers, Luminy 1990, Ph. Philippon (ed.), to appear. Zbl0709.11004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.