On the equation
Compositio Mathematica (1982)
- Volume: 47, Issue: 3, page 289-315
- ISSN: 0010-437X
Access Full Article
topHow to cite
topEvertse, Jan-Hendrik. "On the equation $ax^n - by^n = c$." Compositio Mathematica 47.3 (1982): 289-315. <http://eudml.org/doc/89576>.
@article{Evertse1982,
author = {Evertse, Jan-Hendrik},
journal = {Compositio Mathematica},
keywords = {upper bounds; number of integral solutions; number of residue classes},
language = {eng},
number = {3},
pages = {289-315},
publisher = {Martinus Nijhoff Publishers},
title = {On the equation $ax^n - by^n = c$},
url = {http://eudml.org/doc/89576},
volume = {47},
year = {1982},
}
TY - JOUR
AU - Evertse, Jan-Hendrik
TI - On the equation $ax^n - by^n = c$
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 47
IS - 3
SP - 289
EP - 315
LA - eng
KW - upper bounds; number of integral solutions; number of residue classes
UR - http://eudml.org/doc/89576
ER -
References
top- [1] A. Baker: The theory of linear forms in logarithms. In: A. Baker and D.W. Masser (eds.), Transcendence theory, advances and applications, Ch. 1. Proc. Conf. Cambridge 1976, Academic Press, London. Zbl0361.10028MR498417
- [2] Y. Domar: On the diophantine equation |Axn - Byn| = 1, n ≽ 5. Math. Scand.2 (1954) 29-32. Zbl0056.03602
- [3] S. Hyyrö: Über die Gleichung axn - by'' = z und das Catalansche Problem. Ann. Ac. Scient. Fenn. Ser.A1355 (1964). Zbl0137.25705MR205925
- [4] W. Ljunggren: Einige Eigenschaften der Einheiten reeller quadratischer and rein biquadratischer Zahlkörper. Oslo Vid-Akad. Skrifter1 (1936) No. 12. Zbl0016.00802JFM63.0147.01
- [5] T. Nagell: Über einige kubischer Gleichungen mit zwei Unbestimmten. Math. Z.24 (1926) 422-447. MR1544774JFM51.0135.01
- [6] C.L. Siegel: Die Gleichung axn - byn = c. Math. Ann.114 (1937) 57-68. Zbl0015.38902MR1513124JFM63.0117.01
Citations in EuDML Documents
top- T. N. Shorey, R. Tijdeman, Perfect powers in arithmetical progression (II)
- Julia Mueller, Binomial Thue's equation over function fields
- T. N. Shorey, R. Tijdeman, Perfect powers in products of terms in an arithmetical progression (II)
- T. N. Shorey, R. Tijdeman, Perfect powers in products of terms in an arithmetical progression III
- T. N. Shorey, R. Tijdeman, Perfect powers in products of terms in an arithmetical progression
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.