Some variations and consequences of the Kummer-Mirimanoff congruences

Takashi Agoh

Acta Arithmetica (1992)

  • Volume: 62, Issue: 1, page 73-96
  • ISSN: 0065-1036

How to cite

top

Takashi Agoh. "Some variations and consequences of the Kummer-Mirimanoff congruences." Acta Arithmetica 62.1 (1992): 73-96. <http://eudml.org/doc/206481>.

@article{TakashiAgoh1992,
author = {Takashi Agoh},
journal = {Acta Arithmetica},
keywords = {Fermat's last theorem; Mirimanoff polynomials; Fermat quotients; Kummer- Mirimanoff congruences; Bernoulli number},
language = {eng},
number = {1},
pages = {73-96},
title = {Some variations and consequences of the Kummer-Mirimanoff congruences},
url = {http://eudml.org/doc/206481},
volume = {62},
year = {1992},
}

TY - JOUR
AU - Takashi Agoh
TI - Some variations and consequences of the Kummer-Mirimanoff congruences
JO - Acta Arithmetica
PY - 1992
VL - 62
IS - 1
SP - 73
EP - 96
LA - eng
KW - Fermat's last theorem; Mirimanoff polynomials; Fermat quotients; Kummer- Mirimanoff congruences; Bernoulli number
UR - http://eudml.org/doc/206481
ER -

References

top
  1. [1] T. Agoh, On the criteria of Wieferich and Mirimanoff, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 49-52. Zbl0585.10009
  2. [2] T. Agoh, On Fermat's last theorem, C. R. Math. Rep. Acad. Sci. Canada 11 (1990), 11-15. Zbl0703.11015
  3. [3] T. Agoh, On the Kummer-Mirimanoff congruences, Acta Arith. 55 (1990), 141-156. Zbl0648.10013
  4. [4] G. Benneton, Sur le dernier théorème de Fermat, Ann. Sci. Univ. Besançon Math. 3 (1974), 15 pp. Zbl0348.10010
  5. [5] R. Fueter, Kummers Kriterium zum letzten Theorem von Fermat, Math. Ann. 85 (1922), 11-20. Zbl48.0130.05
  6. [6] A. J. Granville, Diophantine equations with varying exponents (with special reference to Fermat's last theorem) , Ph.D. thesis, Queen's Univ., 1989, 206 pp. 
  7. [7] E. E. Kummer, Einige Sätze über die aus den Wurzeln der Gleichung α λ = 1 gebildeten complexen Zahlen, für den Fall, daß die Klassenanzahl durch λ theilbar ist, nebst Anwendung derselben auf einen weiteren Beweis des letzten Fermat’schen Lehrsatzes, Abhandl. Königl. Akad. Wiss. Berlin 1857, 41-74. 
  8. [8] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. 39 (1938), 350-360. Zbl0019.00505
  9. [9] D. Mirimanoff, L’équation indéterminée x l + y l + z l = 0 et le critérium de Kummer, J. Reine Angew. Math. 128 (1905), 45-68. 
  10. [10] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, New York 1979. 
  11. [11] F. Thaine, On the first case of Fermat's last theorem, J. Number Theory 20 (1985), 128-142. Zbl0571.10016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.