Kummer type system of congruences and bases of Stickelberger subideals

Takashi Agoh; Kenichi Mori

Archivum Mathematicum (1996)

  • Volume: 032, Issue: 3, page 211-232
  • ISSN: 0044-8753

How to cite

top

Agoh, Takashi, and Mori, Kenichi. "Kummer type system of congruences and bases of Stickelberger subideals." Archivum Mathematicum 032.3 (1996): 211-232. <http://eudml.org/doc/247861>.

@article{Agoh1996,
author = {Agoh, Takashi, Mori, Kenichi},
journal = {Archivum Mathematicum},
keywords = {Kummer system of congruences; Bernoulli numbers; Stickelberger ideal; Mirimanoff polynomials; group ring; cyclotomic field},
language = {eng},
number = {3},
pages = {211-232},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Kummer type system of congruences and bases of Stickelberger subideals},
url = {http://eudml.org/doc/247861},
volume = {032},
year = {1996},
}

TY - JOUR
AU - Agoh, Takashi
AU - Mori, Kenichi
TI - Kummer type system of congruences and bases of Stickelberger subideals
JO - Archivum Mathematicum
PY - 1996
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 032
IS - 3
SP - 211
EP - 232
LA - eng
KW - Kummer system of congruences; Bernoulli numbers; Stickelberger ideal; Mirimanoff polynomials; group ring; cyclotomic field
UR - http://eudml.org/doc/247861
ER -

References

top
  1. Agoh T., On the criteria of Wieferich and Mirimanoff, C.R. Math. Rep. Acad. Sci. Canada 8(1989), 49-52. (1989) MR0827116
  2. Agoh T., On the Kummer-Mirimanoff congruences, Acta Arith. 55(1990), 141-156. (1990) Zbl0648.10013MR1061635
  3. Agoh T., Some variations and consequences of the Kummer-Mirimanoff congruences, Acta Arith. 62(1992), 73-96. (1992) Zbl0738.11031MR1179011
  4. Agoh T., Skula L., Kummer type congruences and Stickelberger subideals, Acta Arith. 75 (1996), 235-250. (1996) Zbl0841.11012MR1387862
  5. Benneton G., Sur le dernier théorème de Fermat, Ann. Sci. Univ. Besançon Math. 3(1974), 15 pp. (1974) Zbl0348.10010MR0419347
  6. Fueter R., Kummers Kriterium zum letzten Theorem von Fermat, Math. Ann. 85(1922), 11-20. (1922) MR1512040
  7. Granville A., Diophantine equations with varying exponents (with special reference to Fermat’s last theorem), Ph.D. thesis, Queen’s University, 1987. (1987) MR2635873
  8. Iwasawa K., A class number formula for cyclotomic field, Ann. of Math. 76(1962), 171-179. (1962) MR0154862
  9. Sinnott W., On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 108(1978), 107-134. (1978) Zbl0395.12014MR0485778
  10. Sinnott W., On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62(1980), 181-234. (1980) Zbl0465.12001MR0595586
  11. Skula L., A remark on Mirimanoff polynomials, Comment. Math. Univ. St. Paul. 31(1982), 89-97. (1982) Zbl0496.10006MR0674586
  12. Skula L., Systems of equations depending on certain ideals, Arch. Math. (Brno) 21(1985), 23-38. (1985) Zbl0589.12005MR0818304
  13. Skula L., Some bases of the Stickelberger ideal, Math. Slovaca 43(1993), 541-571. (1993) Zbl0798.11044MR1273710
  14. Skula L., Agoh’s bases of the Stickelberger ideal, Math. Slovaca 44(1994), 663-670. (1994) Zbl0826.11049MR1338436
  15. Skula L., On a special ideal contained in the Stickelberger ideal, J. of Number Theory, 58 (1996), 173-195. (1996) Zbl0861.11063MR1387734
  16. Skula L., Inclusion among special Stickelberger subideals, to appear in the Proceedings of the 12-th Czecho-Slovak Number Theory Conference (1995). (1995) MR1475511

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.