# Points at rational distance from the vertices of a triangle

Acta Arithmetica (1992)

- Volume: 62, Issue: 4, page 391-398
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topT. G. Berry. "Points at rational distance from the vertices of a triangle." Acta Arithmetica 62.4 (1992): 391-398. <http://eudml.org/doc/206501>.

@article{T1992,

author = {T. G. Berry},

journal = {Acta Arithmetica},

keywords = {quartic diophantine equation; Kummer surface; Hurwitz-Poincaré criterion},

language = {eng},

number = {4},

pages = {391-398},

title = {Points at rational distance from the vertices of a triangle},

url = {http://eudml.org/doc/206501},

volume = {62},

year = {1992},

}

TY - JOUR

AU - T. G. Berry

TI - Points at rational distance from the vertices of a triangle

JO - Acta Arithmetica

PY - 1992

VL - 62

IS - 4

SP - 391

EP - 398

LA - eng

KW - quartic diophantine equation; Kummer surface; Hurwitz-Poincaré criterion

UR - http://eudml.org/doc/206501

ER -

## References

top- [1] J. H. J. Almering, Rational quadrilaterals, Indag. Mat. 25 (1963), 192-199.
- [2] T. G. Berry, Points at rational distance from the corners of a unit square, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 505-529. Zbl0726.11041
- [3] A. Bremner and R. K. Guy, A dozen difficult diophantine dilemmas, Amer. Math. Monthly 95 (1988), 31-36. Zbl0647.10017
- [4] A. Bremner and R. K. Guy, The delta-lambda configurations in tiling the square, J. Number Theory 32 (1989), 263-280. Zbl0678.05013
- [5] R. K. Guy, Tiling the square with rational triangles, in: Number Theory and Applications, R. A. Mollin (ed.), NATO Adv. Study Inst. Ser. C 265, Kluwer, 1989, 45-101. Zbl0748.05046
- [6] W. H. Hudson, Kummer's Quartic Surface, reprinted, with foreword by W. Barth, Cambridge University Press, 1990. Zbl0716.14025
- [7] S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983. Zbl0528.14013
- [8] G. Salmon, A Treatise on Conic Sections, Chelsea, 1954.
- [9] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59. Zbl0226.14013
- [10] T. Skolem, Diophantische Gleichungen, Chelsea, 1956.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.