Entiers sans grand ni petit facteur premier II

Eric Saias

Acta Arithmetica (1993)

  • Volume: 63, Issue: 4, page 287-312
  • ISSN: 0065-1036

How to cite

top

Eric Saias. "Entiers sans grand ni petit facteur premier II." Acta Arithmetica 63.4 (1993): 287-312. <http://eudml.org/doc/206522>.

@article{EricSaias1993,
author = {Eric Saias},
journal = {Acta Arithmetica},
keywords = {integers with no small or large prime factors},
language = {fre},
number = {4},
pages = {287-312},
title = {Entiers sans grand ni petit facteur premier II},
url = {http://eudml.org/doc/206522},
volume = {63},
year = {1993},
}

TY - JOUR
AU - Eric Saias
TI - Entiers sans grand ni petit facteur premier II
JO - Acta Arithmetica
PY - 1993
VL - 63
IS - 4
SP - 287
EP - 312
LA - fre
KW - integers with no small or large prime factors
UR - http://eudml.org/doc/206522
ER -

References

top
  1. [1] N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Nederl. Akad. Wetensch. Proc. 53 (1950), 803-812. Zbl0037.03001
  2. [2] N. G. de Bruijn, On the number of positive integers ≤ x and free of prime factors >y, Nederl. Akad. Wetensch. Proc. 54 (1951), 50-60. Zbl0042.04204
  3. [3] E. R. Canfield, P. Erdős and C. Pomerance, On a problem of Oppenheim concerning ``Factorisatio Numerorum'', J. Number Theory 17 (1983), 1-28. Zbl0513.10043
  4. [4] P. Erdős et G. Tenenbaum, Sur les densités de certaines suites d'entiers, Proc. London Math. Soc. (3) 59 (1989), 417-438. 
  5. [5] E. Fouvry et G. Tenenbaum, Entiers sans grand facteur premier en progressions arithmétiques, Proc. London Math. Soc. 63 (1991), 449-494. Zbl0745.11042
  6. [6] J. B. Friedlander, Integers free from large and small primes, Proc. London Math. Soc. 33 (1976), 565-576. Zbl0344.10021
  7. [7] J. B. Friedlander, A. Granville, A. Hildebrand and H. Maier, Oscillation theorems for primes in arithmetic progressions and for sifting functions, J. Amer. Math. Soc. 4 (1991), 25-86. Zbl0724.11040
  8. [8] A. Hildebrand, On the number of positive integers ≤ x and free of prime factors > y, J. Number Theory 22 (1986), 289-307. Zbl0575.10038
  9. [9] A. Hildebrand, On the number of prime factors of integers without large prime divisors, J. Number Theory 25 (1987), 81-106. Zbl0621.10028
  10. [10] A. Hildebrand and H. Maier, Irregularities in the distribution of primes in short intervals, J. Reine Angew. Math. 397 (1989), 162-193. Zbl0658.10048
  11. [11] A. Hildebrand and G. Tenenbaum, On integers free of large prime factors, Trans. Amer. Math. Soc. 296 (1986), 265-290. Zbl0601.10028
  12. [12] A. Hildebrand and G. Tenenbaum, On the number of prime factors of an integer, Duke Math. J. 56 (3) (1988), 471-501. Zbl0655.10036
  13. [13] B. V. Levin and A. S. Faĭnleĭb, Applications of some integral equations to problems in number theory, Russian Math. Surveys 22 (3) (1967), 119-204. Zbl0204.06502
  14. [14] E. Saias, Sur le nombre des entiers sans grand facteur premier, J. Number Theory 32 (1989), 78-99. Zbl0676.10028
  15. [15] E. Saias, Entiers sans grand ni petit facteur premier I, Acta Arith. 61 (1992), 347-374. 
  16. [16] E. Saias, Entiers sans grand ni petit facteur premier III, prépublication. 
  17. [17] H. Smida, Valeur moyenne des fonctions de Piltz sur les entiers sans grand facteur premier, ce volume, 21-50. 
  18. [18] G. Tenenbaum, Sur un problème extrémal en arithmétique, Ann. Inst. Fourier (Grenoble) 37 (2) (1987), 1-18. Zbl0622.10030
  19. [19] G. Tenenbaum, La méthode du col en théorie analytique des nombres, dans : Séminaire de Théorie des Nombres, Paris 1986-87, C. Goldstein (ed.), Progr. Math. 75, Birkhäuser, 1988, 411-442. 
  20. [20] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Institut Elie Cartan 13, Université de Nancy I, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.