On the diophantine equation D x ² + D = 2 n + 2

Maohua Le

Acta Arithmetica (1993)

  • Volume: 64, Issue: 1, page 29-41
  • ISSN: 0065-1036

How to cite

top

Maohua Le. "On the diophantine equation $D₁x² + D₂ = 2^{n+2}$." Acta Arithmetica 64.1 (1993): 29-41. <http://eudml.org/doc/206533>.

@article{MaohuaLe1993,
author = {Maohua Le},
journal = {Acta Arithmetica},
keywords = {exponential diophantine equation},
language = {eng},
number = {1},
pages = {29-41},
title = {On the diophantine equation $D₁x² + D₂ = 2^\{n+2\}$},
url = {http://eudml.org/doc/206533},
volume = {64},
year = {1993},
}

TY - JOUR
AU - Maohua Le
TI - On the diophantine equation $D₁x² + D₂ = 2^{n+2}$
JO - Acta Arithmetica
PY - 1993
VL - 64
IS - 1
SP - 29
EP - 41
LA - eng
KW - exponential diophantine equation
UR - http://eudml.org/doc/206533
ER -

References

top
  1. [1] R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1263-1264. Zbl0093.04703
  2. [2] A. Baker, Contribution to the theory of diophantine equations I: On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1967), 273-297. 
  3. [3] V. I. Baulin, On an indeterminate equation of the third degree with least positive discriminant, Tul'sk. Gos. Ped. Inst. Uchen. Zap. Fiz.-Mat. Nauk Vyp. 7 (1960), 138-170 (in Russian). 
  4. [4] E. Bender and N. Herzberg, Some diophantine equations related to the quadratic form ax²+by², in: Studies in Algebra and Number Theory, G.-C. Rota (ed.), Adv. in Math. Suppl. Stud. 6, Academic Press, San Diego 1979, 219-272. 
  5. [5] F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410. Zbl0371.10014
  6. [6] J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537-540. Zbl0127.26705
  7. [7] K. Győry and Z. Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, in: Studies in Pure Mathematics, Akadémiai Kiadó, Budapest 1983, 245-257. Zbl0518.10020
  8. [8] M.-H. Le, The divisibility of the class number for a class of imaginary quadratic fields, Kexue Tongbao (Chinese) 32 (1987), 724-727 (in Chinese). 
  9. [9] M.-H. Le, On the number of solutions of the generalized Ramanujan-Nagell equation x ² - D = 2 n + 2 , Acta Arith. 60 (1991), 149-167. 
  10. [10] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983. 
  11. [11] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method III, Ann. Fac. Sci. Toulouse 97 (1989), 43-75. Zbl0702.11044
  12. [12] T. Nagell, The diophantine equation x ² + 7 = 2 n , Ark. Mat. 4 (1960), 185-187 Zbl0103.03001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.