On the diophantine equation
Acta Arithmetica (1993)
- Volume: 64, Issue: 1, page 29-41
- ISSN: 0065-1036
Access Full Article
topHow to cite
topMaohua Le. "On the diophantine equation $D₁x² + D₂ = 2^{n+2}$." Acta Arithmetica 64.1 (1993): 29-41. <http://eudml.org/doc/206533>.
@article{MaohuaLe1993,
author = {Maohua Le},
journal = {Acta Arithmetica},
keywords = {exponential diophantine equation},
language = {eng},
number = {1},
pages = {29-41},
title = {On the diophantine equation $D₁x² + D₂ = 2^\{n+2\}$},
url = {http://eudml.org/doc/206533},
volume = {64},
year = {1993},
}
TY - JOUR
AU - Maohua Le
TI - On the diophantine equation $D₁x² + D₂ = 2^{n+2}$
JO - Acta Arithmetica
PY - 1993
VL - 64
IS - 1
SP - 29
EP - 41
LA - eng
KW - exponential diophantine equation
UR - http://eudml.org/doc/206533
ER -
References
top- [1] R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1263-1264. Zbl0093.04703
- [2] A. Baker, Contribution to the theory of diophantine equations I: On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1967), 273-297.
- [3] V. I. Baulin, On an indeterminate equation of the third degree with least positive discriminant, Tul'sk. Gos. Ped. Inst. Uchen. Zap. Fiz.-Mat. Nauk Vyp. 7 (1960), 138-170 (in Russian).
- [4] E. Bender and N. Herzberg, Some diophantine equations related to the quadratic form ax²+by², in: Studies in Algebra and Number Theory, G.-C. Rota (ed.), Adv. in Math. Suppl. Stud. 6, Academic Press, San Diego 1979, 219-272.
- [5] F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410. Zbl0371.10014
- [6] J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537-540. Zbl0127.26705
- [7] K. Győry and Z. Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, in: Studies in Pure Mathematics, Akadémiai Kiadó, Budapest 1983, 245-257. Zbl0518.10020
- [8] M.-H. Le, The divisibility of the class number for a class of imaginary quadratic fields, Kexue Tongbao (Chinese) 32 (1987), 724-727 (in Chinese).
- [9] M.-H. Le, On the number of solutions of the generalized Ramanujan-Nagell equation , Acta Arith. 60 (1991), 149-167.
- [10] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983.
- [11] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method III, Ann. Fac. Sci. Toulouse 97 (1989), 43-75. Zbl0702.11044
- [12] T. Nagell, The diophantine equation , Ark. Mat. 4 (1960), 185-187 Zbl0103.03001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.