On the number of solutions of the generalized Ramanujan-Nagell equation
Acta Arithmetica (1991)
- Volume: 60, Issue: 2, page 149-167
- ISSN: 0065-1036
Access Full Article
topHow to cite
topMaohua Le. "On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^{n+2}$." Acta Arithmetica 60.2 (1991): 149-167. <http://eudml.org/doc/206430>.
@article{MaohuaLe1991,
author = {Maohua Le},
journal = {Acta Arithmetica},
keywords = {number of solutions; Ramanujan-Nagell equation},
language = {eng},
number = {2},
pages = {149-167},
title = {On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^\{n+2\}$},
url = {http://eudml.org/doc/206430},
volume = {60},
year = {1991},
}
TY - JOUR
AU - Maohua Le
TI - On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^{n+2}$
JO - Acta Arithmetica
PY - 1991
VL - 60
IS - 2
SP - 149
EP - 167
LA - eng
KW - number of solutions; Ramanujan-Nagell equation
UR - http://eudml.org/doc/206430
ER -
References
top- [1] F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410. Zbl0371.10014
- [2] P. G. L. Dirichlet, Sur une propriété des formes quadratiques à déterminant positif, J. Math. Pures Appl. (2) 1 (1856), 76-79.
- [3] L.-K. Hua, Introduction to Number Theory, Springer, Berlin 1982.
- [4] M.-H. Le, The diophantine equation , Proc. Amer. Math. Soc. 106 (1989), 599-604.
- [5] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983.
- [6] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, Leipzig 1929. Zbl55.0262.09
- [7] K. Petr, Sur l'équation de Pell, Časopis Pest. Mat. Fys. 56 (1927), 57- 66 (in Czech).
- [8] N. Tzanakisand J. Wolfskill, The diophantine equation , with an application to coding theory, J. Number Theory 26 (1987), 96-116. Zbl0612.10013
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.