Explicit solution of a class of quartic Thue equations

Nikos Tzanakis

Acta Arithmetica (1993)

  • Volume: 64, Issue: 3, page 271-283
  • ISSN: 0065-1036

How to cite

top

Nikos Tzanakis. "Explicit solution of a class of quartic Thue equations." Acta Arithmetica 64.3 (1993): 271-283. <http://eudml.org/doc/206550>.

@article{NikosTzanakis1993,
author = {Nikos Tzanakis},
journal = {Acta Arithmetica},
keywords = {common solutions of Pellian equations; common values of recurrence sequences; quartic Thue equations},
language = {eng},
number = {3},
pages = {271-283},
title = {Explicit solution of a class of quartic Thue equations},
url = {http://eudml.org/doc/206550},
volume = {64},
year = {1993},
}

TY - JOUR
AU - Nikos Tzanakis
TI - Explicit solution of a class of quartic Thue equations
JO - Acta Arithmetica
PY - 1993
VL - 64
IS - 3
SP - 271
EP - 283
LA - eng
KW - common solutions of Pellian equations; common values of recurrence sequences; quartic Thue equations
UR - http://eudml.org/doc/206550
ER -

References

top
  1. [BD] A. Baker and H. Davenport, The equations 3x²-2=y² and 8x²-7=z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. 
  2. [C1] J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153-166. Zbl0136.02806
  3. [C2] J. H. E. Cohn, The Diophantine equation y²=Dx⁴+1, J. London Math. Soc. 42 (1967), 475-476. 
  4. [C3] J. H. E. Cohn, Some quartic Diophantine equations, Pacific J. Math. 26 (1968), 233-243. Zbl0191.04902
  5. [C4] J. H. E. Cohn, The Diophantine equation y²=Dx⁴+1, II, Acta Arith. 28 (1975), 273-275. 
  6. [C5] J. H. E. Cohn, The Diophantine equation y²=Dx⁴+1, III, Math. Scand. 42 (1978), 180-188. Zbl0395.10025
  7. [M*] L. J. Mordell, Diophantine Equations, Pure Appl. Math. 30, Academic Press, London 1969. 
  8. [MR] S. P. Mohanty and A. M. S. Ramasamy, The characteristic number of two simultaneous Pell's equations and its applications, Simon Stevin 59 (1985), 203-214. Zbl0575.10010
  9. [N] T. Nagell, Sur quelques questions dans la théorie des corps biquadratiques, Ark. Mat. 4 (1961), 347-376. Zbl0107.03202
  10. [N*] T. Nagell, Introduction to Number Theory, Chelsea, New York 1964. 
  11. [PS] A. Pethő and R. Schulenberg, Effektives Lösen von Thue Gleichungen, Publ. Math. Debrecen 34 (1987), 189-196. 
  12. [P] R. G. E. Pinch, Simultaneous Pellian equations, Math. Proc. Cambridge Philos. Soc. 103 (1988), 35-46. Zbl0641.10014
  13. [TW] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. Zbl0657.10014
  14. [Z] D. Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), 425-436 Zbl0611.10008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.