On two-parametric family of quartic Thue equations
- [1] FESB, University of Split R. Boškovića bb 21000 Split, Croatia
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 161-167
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topJadrijević, Borka. "On two-parametric family of quartic Thue equations." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 161-167. <http://eudml.org/doc/249420>.
@article{Jadrijević2005,
abstract = {We show that for all integers $m$ and $n$ there are no non-trivial solutions of Thue equation\begin\{equation*\} x^\{4\}-2mnx^\{3\}y+2\left( m^\{2\}-n^\{2\}+1\right) x^\{2\}y^\{2\}+2mnxy^\{3\}+y^\{4\}=1, \end\{equation*\}satisfying the additional condition $\gcd (xy,mn)=1$.},
affiliation = {FESB, University of Split R. Boškovića bb 21000 Split, Croatia},
author = {Jadrijević, Borka},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {161-167},
publisher = {Université Bordeaux 1},
title = {On two-parametric family of quartic Thue equations},
url = {http://eudml.org/doc/249420},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Jadrijević, Borka
TI - On two-parametric family of quartic Thue equations
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 161
EP - 167
AB - We show that for all integers $m$ and $n$ there are no non-trivial solutions of Thue equation\begin{equation*} x^{4}-2mnx^{3}y+2\left( m^{2}-n^{2}+1\right) x^{2}y^{2}+2mnxy^{3}+y^{4}=1, \end{equation*}satisfying the additional condition $\gcd (xy,mn)=1$.
LA - eng
UR - http://eudml.org/doc/249420
ER -
References
top- A. Baker, Contributions to the theory of Diophantine equations I. On the representation of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A 263 (1968), 173–191. Zbl0157.09702MR228424
- A. Baker, H. Davenport, The equations and . Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. Zbl0177.06802MR248079
- A. Baker, G. Wüstholz, Logarithmic forms and group varieties. J. Reine Angew. Math. 442 (1993), 19–62. Zbl0788.11026MR1234835
- M. A. Bennett, On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math. 498 (1998), 173–199. Zbl1044.11011MR1629862
- Yu. Bilu, G. Hanrot, Solving Thue equations of high degree. J. Number Theory, 60 (1996), 373–392. Zbl0867.11017MR1412969
- J. H. Chen, P. M. Voutier, Complete solution of the Diophantine equation and a related family of Thue equations. J. Number Theory 62 (1996), 273–292. Zbl0869.11025
- A. Dujella, B. Jadrijević, A parametric family of quartic Thue equations. Acta Arith. 101 (2002), 159–170. Zbl0987.11017MR1880306
- A. Dujella, B. Jadrijević, A family of quartic Thue inequalities. To appear in Acta Arith. Zbl1050.11036
- A. Dujella, A. Pethő, A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (1998), 291–306. Zbl0911.11018MR1645552
- C. Heuberger, A. Pethő, R. F. Tichy, Complete solution of parametrized Thue equations. Acta Math. Inform. Univ. Ostraviensis 6 (1998), 93–113. Zbl1024.11017MR1822519
- B. Jadrijević, A two-parametric family of quartic Thue equations. PhD thesis, University of Zagreb, 2001. (in Croatian) Zbl1162.11327
- B. Jadrijević, A system of Pellian equations and related two-parametric family of quartic Thue equations. Rocky Mountain J. Math. 35 no. 2 (2005), 547–571. Zbl1090.11021MR2135585
- G. Lettl, A. Pethő, Complete solution of a family of quartic Thue equations. Abh. Math. Sem. Univ. Hamburg 65 (1995), 365–383. Zbl0853.11021MR1359142
- W. Ljunggren, Über die Gleichung . Arch. Math. Naturvid. 45 (1942), 1–12. Zbl0026.29604MR12619
- M. Mignotte, A. Pethő, R. Roth, Complete solutions of quartic Thue and index form equations. Math. Comp. 65 (1996), 341–354. Zbl0853.11022MR1316596
- A. Pethő, Complete solutions to families of quartic Thue equations. Math. Comp. 57 (1991), 777–798. Zbl0738.11028MR1094956
- A. Pethő, R. Schulenberg, Effectives Lösen von Thue Gleichungen. Publ. Math. Debrecen 34 (1987), 189–196. Zbl0657.10015MR934900
- A. Pethő, R. T. Tichy, On two-parametric quartic families of Diophantine problems. J. Symbolic Comput. 26 (1998), 151–171. Zbl0926.11016MR1635234
- E. Thomas, Complete solutions to a family of cubic Diophantine equations. J. Number Theory 34 (1990), 235–250. Zbl0697.10011MR1042497
- A. Thue, Über Annäherungswerte algebraischer Zahlen. J. Reine Angew. Math. 135 (1909), 284–305.
- A. Togbé, On the solutions of a family of quartic Thue equations. Math. Comp. 69 (2000), 839–849. Zbl0963.11018MR1648411
- N. Tzanakis, Explicit solution of a class of quartic Thue equations. Acta Arith. 64 (1993), 271–283. Zbl0774.11014MR1225429
- N. Tzanakis, B. M. M. de Weger, On the practical solution of the Thue equation. J. Number Theory 31 (1989), 99–132. Zbl0657.10014MR987566
- I. Wakabayashi, On a family of quartic Thue inequalities. J. Number Theory 66 (1997), 70–84. Zbl0884.11021MR1467190
- I. Wakabayashi, On a family of quartic Thue inequalities, II. J. Number Theory 80 (2000), 60–88. Zbl1047.11030MR1735648
- P. G. Walsh, A note a theorem of Ljunggren and the Diophantine equations . Arch Math. 73, No.2, (1999), 119–125. Zbl0941.11012MR1703679
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.