Fourier coefficients of real analytic cusp forms of arbitrary real weight
Acta Arithmetica (1993)
- Volume: 65, Issue: 1, page 1-14
- ISSN: 0065-1036
Access Full Article
topHow to cite
topRoland Matthes. "Fourier coefficients of real analytic cusp forms of arbitrary real weight." Acta Arithmetica 65.1 (1993): 1-14. <http://eudml.org/doc/206560>.
@article{RolandMatthes1993,
author = {Roland Matthes},
journal = {Acta Arithmetica},
keywords = {real analytic cusp forms; mean square estimate; Fourier coefficients},
language = {eng},
number = {1},
pages = {1-14},
title = {Fourier coefficients of real analytic cusp forms of arbitrary real weight},
url = {http://eudml.org/doc/206560},
volume = {65},
year = {1993},
}
TY - JOUR
AU - Roland Matthes
TI - Fourier coefficients of real analytic cusp forms of arbitrary real weight
JO - Acta Arithmetica
PY - 1993
VL - 65
IS - 1
SP - 1
EP - 14
LA - eng
KW - real analytic cusp forms; mean square estimate; Fourier coefficients
UR - http://eudml.org/doc/206560
ER -
References
top- [1] H. Davenport, Multiplicative Number Theory, Markham, Chicago, 1967.
- [2] E. Landau, Über die Anzahl der Gitterpunkte in gewissen Bereichen, II , Nachr. Ges. Wiss. Göttingen (1915), 209-243. Zbl45.0312.02
- [3] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, 1966. Zbl0143.08502
- [4] R. Matthes, Rankin-Selberg method for real analytic cusp forms of arbitrary real weight, Math. Z. 211 (1992), 155-172. Zbl0738.11042
- [5] R. Matthes, Prime geodesic theorem for the theta-case, J. Reine Angew. Math., to appear. Zbl0796.11019
- [6] R. A. Rankin, Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions, Proc. Cambridge Philos. Soc. 35 (1939), 357-372. Zbl0021.39202
- [7] W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I, Math. Ann. 167 (1966), 292-337. Zbl0152.07705
- [8] W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene II, Math. Ann. 168 (1967), 261-324.
- [9] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die der Theorie der Modulformen eng verbunden ist, Arch. Math. Naturvid. 43 (1940), 47-50 Zbl66.0377.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.