Fourier coefficients of real analytic cusp forms of arbitrary real weight

Roland Matthes

Acta Arithmetica (1993)

  • Volume: 65, Issue: 1, page 1-14
  • ISSN: 0065-1036

How to cite

top

Roland Matthes. "Fourier coefficients of real analytic cusp forms of arbitrary real weight." Acta Arithmetica 65.1 (1993): 1-14. <http://eudml.org/doc/206560>.

@article{RolandMatthes1993,
author = {Roland Matthes},
journal = {Acta Arithmetica},
keywords = {real analytic cusp forms; mean square estimate; Fourier coefficients},
language = {eng},
number = {1},
pages = {1-14},
title = {Fourier coefficients of real analytic cusp forms of arbitrary real weight},
url = {http://eudml.org/doc/206560},
volume = {65},
year = {1993},
}

TY - JOUR
AU - Roland Matthes
TI - Fourier coefficients of real analytic cusp forms of arbitrary real weight
JO - Acta Arithmetica
PY - 1993
VL - 65
IS - 1
SP - 1
EP - 14
LA - eng
KW - real analytic cusp forms; mean square estimate; Fourier coefficients
UR - http://eudml.org/doc/206560
ER -

References

top
  1. [1] H. Davenport, Multiplicative Number Theory, Markham, Chicago, 1967. 
  2. [2] E. Landau, Über die Anzahl der Gitterpunkte in gewissen Bereichen, II , Nachr. Ges. Wiss. Göttingen (1915), 209-243. Zbl45.0312.02
  3. [3] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, 1966. Zbl0143.08502
  4. [4] R. Matthes, Rankin-Selberg method for real analytic cusp forms of arbitrary real weight, Math. Z. 211 (1992), 155-172. Zbl0738.11042
  5. [5] R. Matthes, Prime geodesic theorem for the theta-case, J. Reine Angew. Math., to appear. Zbl0796.11019
  6. [6] R. A. Rankin, Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions, Proc. Cambridge Philos. Soc. 35 (1939), 357-372. Zbl0021.39202
  7. [7] W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I, Math. Ann. 167 (1966), 292-337. Zbl0152.07705
  8. [8] W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene II, Math. Ann. 168 (1967), 261-324. 
  9. [9] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die der Theorie der Modulformen eng verbunden ist, Arch. Math. Naturvid. 43 (1940), 47-50 Zbl66.0377.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.