Completely q-multiplicative functions: the Mellin transform approach

Peter J. Grabner

Acta Arithmetica (1993)

  • Volume: 65, Issue: 1, page 85-96
  • ISSN: 0065-1036

How to cite

top

Peter J. Grabner. "Completely q-multiplicative functions: the Mellin transform approach." Acta Arithmetica 65.1 (1993): 85-96. <http://eudml.org/doc/206564>.

@article{PeterJ1993,
author = {Peter J. Grabner},
journal = {Acta Arithmetica},
keywords = {completely -multiplicative functions; digit expansion; summatory function; Mellin transform; Dirichlet generating function; Hausdorff measure},
language = {eng},
number = {1},
pages = {85-96},
title = {Completely q-multiplicative functions: the Mellin transform approach},
url = {http://eudml.org/doc/206564},
volume = {65},
year = {1993},
}

TY - JOUR
AU - Peter J. Grabner
TI - Completely q-multiplicative functions: the Mellin transform approach
JO - Acta Arithmetica
PY - 1993
VL - 65
IS - 1
SP - 85
EP - 96
LA - eng
KW - completely -multiplicative functions; digit expansion; summatory function; Mellin transform; Dirichlet generating function; Hausdorff measure
UR - http://eudml.org/doc/206564
ER -

References

top
  1. [Al87] J.-P. Allouche, Automates finis en théorie des nombres, Exposition. Math. 5 (1987), 239-266. Zbl0641.10041
  2. [AC85] J.-P. Allouche and H. Cohen, Dirichlet series and curious infinite products, Bull. London Math. Soc. 17 (1985), 531-538. Zbl0577.10036
  3. [AS88] J.-P. Allouche and J. O. Shallit, Sums of digits and the Hurwitz zeta function, in: Analytic Number Theory, Lecture Notes in Math. 1434, Sprin- ger, Berlin, 1988, 19-30. 
  4. [Ap84] T. M. Apostol, Introduction to Analytic Number Theory, Springer, Berlin, 1984. 
  5. [Co83] J. Coquet, A summation formula related to the binary digits, Invent. Math. 73 (1983), 107-115. Zbl0528.10006
  6. [De72] H. Delange, Sur les fonctions q-additives ou q-multiplicatives, Acta Arith. 21 (1972), 285-298. Zbl0219.10062
  7. [De75] H. Delange, Sur la fonction sommatoire de la fonction ``Somme des Chiffres'', Enseign. Math. (2) 21 (1975), 31-47. Zbl0306.10005
  8. [Du83] J.-M. Dumont, Discrépance des progressions arithmétiques dans la suite de Morse, C. R. Acad. Sci. Paris 297 (1983), 145-148. 
  9. [FGKPT92] P. Flajolet, P. J. Grabner, P. Kirschenhofer, H. Prodinger and R. F. Tichy, Mellin transforms and asymptotics: digital sums, Theoret. Comput. Sci. (to appear). Zbl0788.44004
  10. [FRS85] P. Flajolet, M. Regnier and R. Sedgewick, Some uses of the Mellin integral transform in the analysis of algorithms, in: Combinatorial Algorithms on Words, A. Apostolico and Z. Galil (eds.), Springer, Berlin, 1985, 241-254. Zbl0582.68015
  11. [Ge68] A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-266. Zbl0155.09003
  12. [GKS92] S. Goldstein, K. A. Kelly and E. R. Speer, The fractal structure of rarefied sums of the Thue-Morse sequence, J. Number Theory 42 (1992), 1-19. Zbl0788.11010
  13. [Gr93] P. J. Grabner, A note on the parity of the sum-of-digits function, manu- script. 
  14. [Ha77] H. Harborth, Number of odd binomial coefficients, Proc. Amer. Math. Soc. 62 (1977), 19-22. Zbl0323.10043
  15. [HR15] G. H. Hardy and M. Riesz, The General Theory of Dirichlet's Series, Cambridge University Press, 1915. Zbl45.0387.03
  16. [Ma29] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366. Zbl55.0115.01
  17. [MM83] J.-L. Mauclaire and L. Murata, On q-additive functions, II, Proc. Japan Acad. 59 (1983), 441-444. Zbl0541.10040
  18. [Ne69] D. J. Newman, On the number of binary digits in a multiple of three, Bull. Amer. Math. Soc. 21 (1969), 719-721. Zbl0194.35004
  19. [St89] A. H. Stein, Exponential sums of digit counting functions, in: Théorie des nombres, Comptes Rendus de la Conférence Internationale de Théorie des Nombres tenue à l'Université Laval en 1987, J. M. De Koninck and C. Levesque (eds.), W. de Gruyter, Berlin, 1989, 861-868. 
  20. [Sto77] K. B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math. 32 (1977), 717-730 Zbl0355.10012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.