On the spectrum of the Thue-Morse quasicrystal and the rarefaction phenomenon

Jean-Pierre Gazeau[1]; Jean-Louis Verger-Gaugry[2]

  • [1] Astroparticules et Cosmologie (APC, UMR 7164) Université Paris 7 Denis-Diderot Boite 7020 75251 Paris Cedex 05, France
  • [2] Université de Grenoble I Institut Fourier, CNRS UMR 5582 BP 74, Domaine Universitaire 38402 Saint-Martin d’Hères, France

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 3, page 673-705
  • ISSN: 1246-7405

Abstract

top
The spectrum of a weighted Dirac comb on the Thue-Morse quasicrystal is investigated by means of the Bombieri-Taylor conjecture, for Bragg peaks, and of a new conjecture that we call Aubry-Godrèche-Luck conjecture, for the singular continuous component. The decomposition of the Fourier transform of the weighted Dirac comb is obtained in terms of tempered distributions. We show that the asymptotic arithmetics of the p -rarefied sums of the Thue-Morse sequence (Dumont; Goldstein, Kelly and Speer; Grabner; Drmota and Skalba,...), namely the fractality of sum-of-digits functions, play a fundamental role in the description of the singular continous part of the spectrum, combined with some classical results on Riesz products of Peyrière and M. Queffélec. The dominant scaling of the sequences of approximant measures on a part of the singular component is controlled by certain inequalities in which are involved the class number and the regulator of real quadratic fields.

How to cite

top

Gazeau, Jean-Pierre, and Verger-Gaugry, Jean-Louis. "On the spectrum of the Thue-Morse quasicrystal and the rarefaction phenomenon." Journal de Théorie des Nombres de Bordeaux 20.3 (2008): 673-705. <http://eudml.org/doc/10855>.

@article{Gazeau2008,
abstract = {The spectrum of a weighted Dirac comb on the Thue-Morse quasicrystal is investigated by means of the Bombieri-Taylor conjecture, for Bragg peaks, and of a new conjecture that we call Aubry-Godrèche-Luck conjecture, for the singular continuous component. The decomposition of the Fourier transform of the weighted Dirac comb is obtained in terms of tempered distributions. We show that the asymptotic arithmetics of the $p$-rarefied sums of the Thue-Morse sequence (Dumont; Goldstein, Kelly and Speer; Grabner; Drmota and Skalba,...), namely the fractality of sum-of-digits functions, play a fundamental role in the description of the singular continous part of the spectrum, combined with some classical results on Riesz products of Peyrière and M. Queffélec. The dominant scaling of the sequences of approximant measures on a part of the singular component is controlled by certain inequalities in which are involved the class number and the regulator of real quadratic fields.},
affiliation = {Astroparticules et Cosmologie (APC, UMR 7164) Université Paris 7 Denis-Diderot Boite 7020 75251 Paris Cedex 05, France; Université de Grenoble I Institut Fourier, CNRS UMR 5582 BP 74, Domaine Universitaire 38402 Saint-Martin d’Hères, France},
author = {Gazeau, Jean-Pierre, Verger-Gaugry, Jean-Louis},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Thue-Morse quasicrystal; spectrum; singular continuous component; rarefied sums; sum-of-digits fractal functions; approximation to distribution; Thue-Morse sequence; quasicrystal; singular continuous measure; sum of digits},
language = {eng},
number = {3},
pages = {673-705},
publisher = {Université Bordeaux 1},
title = {On the spectrum of the Thue-Morse quasicrystal and the rarefaction phenomenon},
url = {http://eudml.org/doc/10855},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Gazeau, Jean-Pierre
AU - Verger-Gaugry, Jean-Louis
TI - On the spectrum of the Thue-Morse quasicrystal and the rarefaction phenomenon
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 3
SP - 673
EP - 705
AB - The spectrum of a weighted Dirac comb on the Thue-Morse quasicrystal is investigated by means of the Bombieri-Taylor conjecture, for Bragg peaks, and of a new conjecture that we call Aubry-Godrèche-Luck conjecture, for the singular continuous component. The decomposition of the Fourier transform of the weighted Dirac comb is obtained in terms of tempered distributions. We show that the asymptotic arithmetics of the $p$-rarefied sums of the Thue-Morse sequence (Dumont; Goldstein, Kelly and Speer; Grabner; Drmota and Skalba,...), namely the fractality of sum-of-digits functions, play a fundamental role in the description of the singular continous part of the spectrum, combined with some classical results on Riesz products of Peyrière and M. Queffélec. The dominant scaling of the sequences of approximant measures on a part of the singular component is controlled by certain inequalities in which are involved the class number and the regulator of real quadratic fields.
LA - eng
KW - Thue-Morse quasicrystal; spectrum; singular continuous component; rarefied sums; sum-of-digits fractal functions; approximation to distribution; Thue-Morse sequence; quasicrystal; singular continuous measure; sum of digits
UR - http://eudml.org/doc/10855
ER -

References

top
  1. J.-P. Allouche and M. Mendès-France, Automata and automatic sequences, in Beyond Quasicrystals, Ed. F. Axel and D. Gratias, Course 11, Les Editions de Physique, Springer (1995), 293–367. Zbl0881.11026MR1420422
  2. S. Aubry, C. Godrèche and J.-M. Luck, Scaling Properties of a Structure Intermediate between Quasiperiodic and Random, J. Stat. Phys. 51 (1988), 1033–1075. Zbl1086.37522MR971045
  3. F. Axel and H. Terauchi, High-resolution X-ray-diffraction spectra of Thue-Morse GaAs-AlAs heterostructures: Towards a novel description of disorder, Phys. Rev. Lett. 66 (1991), 2223–2226. 
  4. Zai-Qiao Bai, Multifractal analysis of the spectral measure of the Thue-Morse sequence: a periodic orbit approach, J. Phys. A: Math. Gen. 39 (2006) 10959–10973. Zbl1097.81032MR2277352
  5. J.-P. Bertrandias, Espaces de fonctions continues et bornées en moyenne asymptotique d’ordre p , Mémoire Soc. Math. france (1966), no. 5, 3–106. Zbl0148.11701MR196411
  6. J.-P. Bertrandias, J. Couot, J. Dhombres, M. Mendès-France, P. Phu Hien and K. Vo Khac, Espaces de Marcinkiewicz, corrélations, mesures, systèmes dynamiques, Masson, Paris (1987). Zbl0617.46034MR878355
  7. E. Bombieri and J.E. Taylor, “Which distributions of matter diffract ? An initial investigation”, J. Phys. Colloque 47 (1986), C3, 19–28. Zbl0693.52002MR866320
  8. E. Bombieri and J.E. Taylor, Quasicrystals, tilings, and algebraic number theory: some preliminary connections, Contemp. Math. 64 (1987), 241–264. Zbl0617.43002MR881466
  9. Z.I. Borevitch and I.R. Chafarevitch, Théorie des Nombres, Gauthiers-Villars, Paris (1967). Zbl0145.04901MR205908
  10. Z. Cheng, R. Savit and R. Merlin, Structure and electronic properties of Thue-Morse lattices, Phys. Rev B 37 (1988), 4375–4382. 
  11. H. Cohen and H.W. Lenstra, Jr., Heuristics on Class groups, Lect. Notes Math. 1052 (1984), 26–36. Zbl0532.12008MR750661
  12. H. Cohen and H.W. Lenstra, Jr., Heuristics on Class groups of number fields, Number Theory, Proc. Journ. Arithm., Noodwijkerhout/Neth. 1983, Lect. Notes Math. 1068 (1984), 33–62. Zbl0558.12002MR756082
  13. H. Cohen and J. Martinet, Class Groups of Number Fields: Numerical Heuristics, Math. Comp. 48 (1987), 123–137. Zbl0627.12006MR866103
  14. J. Coquet, A summation formula related to the binary digits, Inv. Math. 73 (1983), 107–115. Zbl0528.10006MR707350
  15. J.-M. Cowley, Diffraction physics, North-Holland, Amsterdam (1986), 2nd edition. 
  16. M. Drmota and M. Skalba, Sign-changes of the Thue-Morse fractal fonction and Dirichlet L -series, Manuscripta Math. 86 (1995), 519–541. Zbl0828.11013MR1324686
  17. M. Drmota and M. Skalba, Rarefied sums of the Thue-Morse sequence, Trans. Amer. Math. Soc. 352 (2000), 609–642. Zbl0995.11017MR1491859
  18. J.M. Dumont, Discrépance des progressions arithmétiques dans la suite de Morse, C. R. Acad. Sci. Paris Série I 297 (1983), 145–148. Zbl0533.10005MR725391
  19. J. P. Gazeau and J.-L. Verger-Gaugry, Diffraction spectra of weighted Delone sets on beta-lattices with beta a quadratic unitary Pisot number, Ann. Inst. Fourier 56 (2006), 2437–2461. Zbl1119.52015MR2290786
  20. A.O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259–265. Zbl0155.09003MR220693
  21. C. Godrèche and J.-M. Luck, Multifractal analysis in reciprocal space and the nature of the Fourier transform of self-similar structures, J. Phys. A: Math. Gen. 23 (1990), 3769–3797. Zbl0713.11021MR1069478
  22. C. Godrèche and J.-M. Luck, Indexing the diffraction spectrum of a non-Pisot self-structure, Phys. Rev. B 45 (1992), 176–185. 
  23. S. Goldstein, K.A. Kelly and E.R. Speer, The fractal structure of rarefied sums of the Thue-Morse sequence, J. Number Th. 42 (1992), 1–19. Zbl0788.11010MR1176416
  24. P.J. Grabner, A note on the parity of the sum-of-digits function, Actes 30ième Séminaire Lotharingien de Combinatoire (Gerolfingen, 1993), 35–42. Zbl1060.11506MR1312627
  25. P.J. Grabner, Completely q -Multiplicative Functions: the Mellin Transform Approach, Acta Arith. 65 (1993), 85–96. Zbl0783.11035MR1239244
  26. P.J. Grabner, T. Herendi and R.F. Tichy, Fractal digital sums and Codes, AAECC 8 (1997), 33-39. Zbl0874.11012MR1465087
  27. A. Guinier, Theory and Technics for X-Ray Crystallography, Dunod, Paris (1964). 
  28. A. Hof, On diffraction by aperiodic structures, Commun. Math. Phys. 169 (1995), 25–43. Zbl0821.60099MR1328260
  29. L.-K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin-New York (1982). Zbl0483.10001MR665428
  30. M. Kac, On the distribution of values of sums of the type f ( 2 k t ) , Ann. Math. 47 (1946), 33–49. Zbl0063.03091MR15548
  31. M. Kolár, B. Iochum and L. Raymond, Structure factor of 1D systems (superlattices) based on two-letter substitution rules: I. δ (Bragg) peaks, J. Phys. A: Math. Gen. 26 (1993), 7343–7366. MR1257767
  32. J.C. Lagarias, Meyer’s concept of quasicrystal and quasiregular sets, Comm. Math. Phys. 179 (1995), 365–376. Zbl0858.52010MR1400744
  33. J.C. Lagarias, Mathematical quasicrystals and the problem of diffraction, in Directions in Mathematical Quasicrystals, ed. M. Baake & R.V. Moody, CRM Monograph Series, Amer. Math. Soc. Providence, RI, (2000), 61–93. Zbl1161.52312MR1798989
  34. H.W. Lenstra Jr., On Artin’s conjecture and Euclid’s algorithm in global fields, Invent. Math. 42 (1977), 201–224. Zbl0362.12012MR480413
  35. D. Lenz, Continuity of Eigenfonctions of Uniquely Ergodic Dynamical Systems and Intensity of Bragg peaks, preprint (2006). MR2480747
  36. J.-M. Luck, Cantor spectra and scaling of gap widths in deterministic aperiodic systems, Phys. Rev. B 39 (1989), 5834–5849. 
  37. R.V. Moody, Meyer sets and their duals, in The Mathematics of Long-Range Aperiodic Order, Ed. R.V. Moody, Kluwer (1997), 403–442. Zbl0880.43008MR1460032
  38. D.J. Newman, On the number of binary digits in a multiple of three, Proc. Am. Math. Soc. 21 (1969), 719–721. Zbl0194.35004MR244149
  39. C.R. de Oliveira, A proof of the dynamical version of the Bombieri-Taylor Conjecture, J. Math. Phys. 39 (1998), 4335–4342. Zbl0940.81017MR1643245
  40. J. Peyrière, Etude de quelques propriétés des produits de Riesz, Ann. Inst. Fourier 25 (1975), 127–169. Zbl0302.43003MR404973
  41. J. Peyrière, E. Cockayne and F. Axel, Line-Shape Analysis of High Resolution X-Ray Diffraction Spectra of Finite Size Thue-Morse GaAs-AlAs Multilayer Heterostructures, J. Phys. I France 5 (1995), 111–127. 
  42. M. Queffélec, Dynamical systems - Spectral Analysis, Lect. Notes Math. 1294 (1987). Zbl0642.28013
  43. M. Queffélec, Spectral study of automatic and substitutive sequences, in Beyond Quasicrystals, Ed. F. Axel and D. Gratias, Course 12, Les Editions de Physique - Springer (1995), 369–414. Zbl0881.11027MR1420423
  44. D. Raikov, On some arithmetical properties of summable functions, Rec. Math. de Moscou 1 (43;3) (1936) 377–383. Zbl0014.39701
  45. L. Schwartz, Théorie des distributions, Hermann, Paris (1973). Zbl0962.46025MR209834
  46. N. Strungaru, Almost Periodic Measures and Long-Range Order in Meyer Sets, Discr. Comput. Geom. 33 (2005), 483–505. Zbl1062.43008MR2121992
  47. J.-L. Verger-Gaugry, On self-similar finitely generated uniformly discrete (SFU-) sets and sphere packings, in IRMA Lect. in Math. and Theor. Phys. 10, Ed. L. Nyssen, E.M.S. (2006), 39–78. Zbl1170.52303MR2277756
  48. K. Vo Khac, Fonctions et distributions stationnaires. Application à l’étude des solutions stationnaires d’équations aux dérivées partielles, in [B-VK], pp 11–57. 
  49. J. Wolny, A. Wnek and J.-L. Verger-Gaugry, Fractal behaviour of diffraction patterns of Thue-Morse sequence, J. Comput. Phys. 163 (2000), 313. Zbl1073.82617MR1783556

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.