Kloosterman-type sums and the discrepancy of nonoverlapping pairs of inversive congruential pseudorandom numbers

Jürgen Eichenauer-Herrmann; Harald Niederreiter

Acta Arithmetica (1993)

  • Volume: 65, Issue: 2, page 185-194
  • ISSN: 0065-1036

How to cite

top

Jürgen Eichenauer-Herrmann, and Harald Niederreiter. "Kloosterman-type sums and the discrepancy of nonoverlapping pairs of inversive congruential pseudorandom numbers." Acta Arithmetica 65.2 (1993): 185-194. <http://eudml.org/doc/206570>.

@article{JürgenEichenauer1993,
author = {Jürgen Eichenauer-Herrmann, Harald Niederreiter},
journal = {Acta Arithmetica},
keywords = {Kloosterman-type exponential sum; inverse congruential sequence; inverse congruential pseudorandom numbers; discrepancy},
language = {eng},
number = {2},
pages = {185-194},
title = {Kloosterman-type sums and the discrepancy of nonoverlapping pairs of inversive congruential pseudorandom numbers},
url = {http://eudml.org/doc/206570},
volume = {65},
year = {1993},
}

TY - JOUR
AU - Jürgen Eichenauer-Herrmann
AU - Harald Niederreiter
TI - Kloosterman-type sums and the discrepancy of nonoverlapping pairs of inversive congruential pseudorandom numbers
JO - Acta Arithmetica
PY - 1993
VL - 65
IS - 2
SP - 185
EP - 194
LA - eng
KW - Kloosterman-type exponential sum; inverse congruential sequence; inverse congruential pseudorandom numbers; discrepancy
UR - http://eudml.org/doc/206570
ER -

References

top
  1. [1] J. Eichenauer, J. Lehn and A. Topuzoğlu, A nonlinear congruential pseudorandom number generator with power of two modulus, Math. Comp. 51 (1988), 757-759. Zbl0701.65008
  2. [2] J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers: a tutorial, Internat. Statist. Rev. 60 (1992), 167-176. Zbl0766.65002
  3. [3] J. Eichenauer-Herrmann, On the autocorrelation structure of inversive congruential pseudorandom number sequences, Statist. Papers 33 (1992), 261-268. Zbl0766.65001
  4. [4] J. Eichenauer-Herrmann, H. Grothe, H. Niederreiter and A. Topuzoğlu, On the lattice structure of a nonlinear generator with modulus 2 α , J. Comput. Appl. Math. 31 (1990), 81-85. Zbl0702.65006
  5. [5] J. Eichenauer-Herrmann and H. Niederreiter, Lower bounds for the discrepancy of inversive congruential pseudorandom numbers with power of two modulus, Math. Comp. 58 (1992), 775-779. Zbl0762.65001
  6. [6] J. Kiefer, On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math. 11 (1961), 649-660. Zbl0119.34904
  7. [7] H. Niederreiter, The serial test for congruential pseudorandom numbers generated by inversions, Math. Comp. 52 (1989), 135-144. Zbl0657.65007
  8. [8] H. Niederreiter, Recent trends in random number and random vector generation, Ann. Oper. Res. 31 (1991), 323-345. Zbl0737.65001
  9. [9] H. Niederreiter, Nonlinear methods for pseudorandom number and vector generation, in: Simulation and Optimization, G. Pflug and U. Dieter (eds.), Lecture Notes in Economics and Math. Systems 374, Springer, Berlin, 1992, 145-153 . Zbl0849.11055
  10. [10] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992. Zbl0761.65002
  11. [11] H. Niederreiter, Pseudorandom numbers and quasirandom points, Z. Angew. Math. Mech., to appear. Zbl0796.11028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.