On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol

Christian Mauduit; András Sárközy

Acta Arithmetica (1997)

  • Volume: 82, Issue: 4, page 365-377
  • ISSN: 0065-1036

How to cite

top

Christian Mauduit, and András Sárközy. "On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol." Acta Arithmetica 82.4 (1997): 365-377. <http://eudml.org/doc/207098>.

@article{ChristianMauduit1997,
author = {Christian Mauduit, András Sárközy},
journal = {Acta Arithmetica},
keywords = {finite pseudorandom binary sequences; combined well-distribution-correlation measure; Legendre symbol; correlation of order along arithmetic progressions},
language = {eng},
number = {4},
pages = {365-377},
title = {On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol},
url = {http://eudml.org/doc/207098},
volume = {82},
year = {1997},
}

TY - JOUR
AU - Christian Mauduit
AU - András Sárközy
TI - On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol
JO - Acta Arithmetica
PY - 1997
VL - 82
IS - 4
SP - 365
EP - 377
LA - eng
KW - finite pseudorandom binary sequences; combined well-distribution-correlation measure; Legendre symbol; correlation of order along arithmetic progressions
UR - http://eudml.org/doc/207098
ER -

References

top
  1. [B] A. Barg, Exponential sums and constrained error-correcting codes, in: Algebraic Coding (Paris, 1991), Lecture Notes in Comput. Sci. 573, Springer, 1992, 16-22. Zbl0859.94026
  2. [B-L] A. Barg and S. N. Lytsin, DC-constrained codes from Hadamard matrices, IEEE Trans. Inform. Theory 37 (1991), 801-807. Zbl0729.94009
  3. [C] J. W. S. Cassels, On a paper of Niven and Zuckerman, Pacific J. Math. 2 (1952), 555-557. Zbl0047.04402
  4. [C-T] F. R. K. Chung and P. Tetali, Communication complexity and quasirandomness, SIAM J. Discrete Math. 6 (1993), 110-123. Zbl0771.05073
  5. [E-L-T] J. Eichenauer, J. Lehn and A. Topuzoğlu, A nonlinear congruential pseudorandom generator with power of two modulus, Math. Comp. 51 (1988), 757-759. Zbl0701.65008
  6. [EH-N1] J. Eichenauer-Herrmann and H. Niederreiter, Lower bounds for the discrepancy of inversive congruential pseudorandom numbers with power of two modulus, Math. Comp. 58 (1992), 775-779. Zbl0762.65001
  7. [EH-N2] J. Eichenauer-Herrmann and H. Niederreiter, Kloosterman-type sums and the discrepancy of nonoverlapping pairs of inversive congruential pseudorandom numbers, Acta Arith. 65 (1993), 185-194. Zbl0785.11043
  8. [EH-N3] J. Eichenauer-Herrmann and H. Niederreiter, Bounds for exponential sums and their applications to pseudorandom numbers, Acta Arith. 67 (1994), 269-281. Zbl0957.11050
  9. [F-I] J. Friedlander and H. Iwaniec, preprint. 
  10. [F-M1] E. Fouvry et C. Mauduit, Sommes des chiffres et nombres presque premiers, Math. Ann. 305 (1996), 571-599. 
  11. [F-M2] E. Fouvry et C. Mauduit, Méthodes de crible et fonctions sommes des chiffres, Acta Arith. 77 (1996), 339-351. 
  12. [Ge] A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265. Zbl0155.09003
  13. [Iw] H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. Math. 87 (1987), 385-401. Zbl0606.10017
  14. [Kn] D. E. Knuth, The Art of Computer Programming, Vol. 2, 2nd ed., Addison-Wesley, Reading, Mass., 1981. 
  15. [Ko] A. N. Kolmogorov, On table of random numbers, Sankhyā A 25 (1963), 369-376. Zbl0126.33203
  16. [MW-S] F. J. MacWilliams and N. J. A. Sloane, Pseudo-random sequences and arrays, Proc. IEEE 64 (1976), 1715-1729. 
  17. [ML] P. Martin-Löf, The definition of random sequences, Inform. and Control (Shenyang) 6 (1966), 602-619. Zbl0244.62008
  18. [M-S1] C. Mauduit and A. Sárközy, On the arithmetic structure of sets characterized by sum of digits properties, J. Number Theory 61 (1996), 25-38. Zbl0868.11004
  19. [M-S2] C. Mauduit and A. Sárközy, On the arithmetic structure of the integers whose sum of digits is fixed, Acta Arith. 81 (1997), 145-173. Zbl0887.11008
  20. [Ni1] H. Niederreiter, Recent trends in random number and random vector generation, Ann. Oper. Res. 31 (1991), 323-345. Zbl0737.65001
  21. [Ni2] H. Niederreiter, New methods for pseudorandom number and pseudorandom vector generation, in: Proc. 1992 Winter Simulation Conference, J. J. Swain et al. (eds.), IEEE Press, Piscataway, N.J., 1992, 264-269. Zbl0849.11055
  22. [Ni3] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992. 
  23. [N-Z] I. Niven and H. S. Zuckerman, On the definition of normal numbers, Pacific J. Math. 1 (1951), 103-109. Zbl0042.26902
  24. [Sch] W. Schmidt, Equations over Finite Fields. An Elementary Approach, Lecture Notes in Math. 536, Springer, New York, 1976. Zbl0329.12001
  25. [Vin] I. M. Vinogradov, Elements of Number Theory, Dover, 1954. 
  26. [We] A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Act. Sci. Ind. 1041, Hermann, Paris, 1948. Zbl0036.16001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.