Nombres 𝓑-libres dans les petits intervalles
Acta Arithmetica (1993)
- Volume: 65, Issue: 2, page 97-116
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] G. Bantle and F. Grupp, On a problem of Erdős and Szemerédi, J. Number Theory 22 (1986), 280-288. Zbl0578.10057
- [2] E. Bombieri, J. B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203-251. Zbl0588.10042
- [3] E. Bombieri and H. Iwaniec, On the order of ζ(1/2+it), Ann. Scuola Norm. Sup. Pisa 13 (1986), 449-472. Zbl0615.10047
- [4] N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Indag. Math. 12 (1949-1950), 247-256.
- [5] P. Erdős, On the difference of consecutive terms of sequences defined by divisibility properties, Acta Arith. 12 (1966), 175-182. Zbl0147.02601
- [6] M. Filaseta and O. Trifonov, On gaps between squarefree numbers II, J. London Math. Soc. (2) 45 (1992), 215-221. Zbl0799.11032
- [7] E. Fouvry and H. Iwaniec, Exponential sums for monomials, J. Number Theory 33 (1989), 311-333. Zbl0687.10028
- [8] J. B. Friedlander, Integers free from large and small primes, Proc. London Math. Soc. (3) 33 (1976), 565-576. Zbl0344.10021
- [9] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge University Press, 1991. Zbl0713.11001
- [10] D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, J. Number Theory 16 (1983), 242-266. Zbl0513.10042
- [11] E. Szemerédi, On the difference of consecutive terms of sequences defined by divisibility properties II, Acta Arith. 23 (1973), 359-361. Zbl0266.10045
- [12] J. Wu, Sur trois questions classiques de crible: nombres premiers jumeaux, nombres et nombres -libres, Thèse de Doctorat, Université d’Orsay, 1990