Numbers with a large prime factor

Hong-Quan Liu; Jie Wu

Acta Arithmetica (1999)

  • Volume: 89, Issue: 2, page 163-187
  • ISSN: 0065-1036

How to cite

top

Hong-Quan Liu, and Jie Wu. "Numbers with a large prime factor." Acta Arithmetica 89.2 (1999): 163-187. <http://eudml.org/doc/207262>.

@article{Hong1999,
author = {Hong-Quan Liu, Jie Wu},
journal = {Acta Arithmetica},
keywords = {numbers with large prime factor; short interval; bilinear exponential sums; sieve methods; alternative sieve; greatest prime factor},
language = {eng},
number = {2},
pages = {163-187},
title = {Numbers with a large prime factor},
url = {http://eudml.org/doc/207262},
volume = {89},
year = {1999},
}

TY - JOUR
AU - Hong-Quan Liu
AU - Jie Wu
TI - Numbers with a large prime factor
JO - Acta Arithmetica
PY - 1999
VL - 89
IS - 2
SP - 163
EP - 187
LA - eng
KW - numbers with large prime factor; short interval; bilinear exponential sums; sieve methods; alternative sieve; greatest prime factor
UR - http://eudml.org/doc/207262
ER -

References

top
  1. [1] R. C. Baker, The greatest prime factor of the integers in an interval, Acta Arith. 47 (1986), 193-231. Zbl0553.10035
  2. [2] R. C. Baker and G. Harman, Numbers with a large prime factor, Acta Arith. 73 (1995), 119-145. 
  3. [3] R. C. Baker, G. Harman and J. Rivat, Primes of the form [ n c ] , J. Number Theory 50 (1995), 261-277. Zbl0822.11062
  4. [4] A. Balog, Numbers with a large prime factor I, Studia Sci. Math. Hungar. 15 (1980), 139-146; II, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, North-Holland, 1984, 49-67. Zbl0445.10033
  5. [5] A. Balog, G. Harman and J. Pintz, Numbers with a large prime factor IV, J. London Math. Soc. (2) 28 (1983), 218-226. Zbl0514.10034
  6. [6] E. Fouvry, Sur le théorème de Brun-Titchmarsh, Acta Arith. 43 (1984), 417-424. 
  7. [7] E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333. Zbl0687.10028
  8. [8] S. W. Graham, The greatest prime factor of the integers in an interval, J. London Math. Soc. (2) 24 (1981), 427-440. Zbl0442.10028
  9. [9] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge Univ. Press, 1991. Zbl0713.11001
  10. [10] G. Harman, On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), 9-13. Zbl0504.10018
  11. [11] D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, J. Number Theory 16 (1983), 242-266. Zbl0513.10042
  12. [12] D. R. Heath-Brown, The largest prime factor of the integers in an interval, Sci. China Ser. A 39 (1996), 449-476. Zbl0867.11064
  13. [13] D. R. Heath-Brown and C. H. Jia, The largest prime factor of the integers in an interval II, J. Reine Angew. Math. 498 (1998), 35-59. Zbl1066.11506
  14. [14] M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford Sci. Publ., Clarendon Press, Oxford, 1996. 
  15. [15] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320. Zbl0444.10038
  16. [16] C. H. Jia, The greatest prime factor of the integers in an interval I, Acta Math. Sinica 29 (1986), 815-825; II, Acta Math. Sinica 32 (1989), 188-199; III, Acta Math. Sinica (N.S.) 9 (1993), 321-336; IV, Acta Math. Sinica 12 (1996), 433-445. Zbl0621.10025
  17. [17] M. Jutila, On numbers with a large prime factor IV, J. Indian Math. Soc. (N.S.) 37 (1973), 43-53. 
  18. [18] H.-Q. Liu, The greatest prime factor of the integers in an interval, Acta Arith. 65 (1993), 301-328. Zbl0797.11071
  19. [19] H.-Q. Liu, A special triple exponential sum, Mathematika 42 (1995), 137-143. Zbl0829.11042
  20. [20] K. Ramachandra, A note on numbers with a large prime factor I, J. London Math. Soc. (2) 1 (1969), 303-306; II, J. Indian Math. Soc. 34 (1970), 39-48. Zbl0179.07301
  21. [21] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Clarendon Press, Oxford, 1986. Zbl0601.10026
  22. [22] J. Wu, Nombres 𝓑-libres dans les petits intervalles, Acta Arith. 65 (1993), 97-116. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.