# Values of linear recurring sequences of vectors over finite fields

Gary L. Mullen; Igor Shparlinski

Acta Arithmetica (1993)

- Volume: 65, Issue: 3, page 221-226
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topGary L. Mullen, and Igor Shparlinski. "Values of linear recurring sequences of vectors over finite fields." Acta Arithmetica 65.3 (1993): 221-226. <http://eudml.org/doc/206575>.

@article{GaryL1993,

author = {Gary L. Mullen, Igor Shparlinski},

journal = {Acta Arithmetica},

keywords = {linear recurring sequence; lower bounds; finite field},

language = {eng},

number = {3},

pages = {221-226},

title = {Values of linear recurring sequences of vectors over finite fields},

url = {http://eudml.org/doc/206575},

volume = {65},

year = {1993},

}

TY - JOUR

AU - Gary L. Mullen

AU - Igor Shparlinski

TI - Values of linear recurring sequences of vectors over finite fields

JO - Acta Arithmetica

PY - 1993

VL - 65

IS - 3

SP - 221

EP - 226

LA - eng

KW - linear recurring sequence; lower bounds; finite field

UR - http://eudml.org/doc/206575

ER -

## References

top- [1] W.-S. Chou and G. L. Mullen, Generating linear spans over finite fields, Acta Arith. 61 (1992), 183-191. Zbl0728.11066
- [2] R. Fitzgerald and J. Yucas, On generating linear spans over GF(p), Congr. Numer. 69 (1989), 55-60. Zbl0688.12013
- [3] R. Kannan and R. J. Lipton, Polynomial-time algorithm for the orbit problem, J. Assoc. Comput. Mach. 33 (1986), 808-821. Zbl1326.68162
- [4] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Addison-Wesley, Reading, Mass., 1983 (now distributed by Cambridge Univ. Press). Zbl0554.12010
- [5] K. S. McCurley, The discrete logarithm problem, in: Cryptology and Computational Number Theory, C. Pomerance (ed.), Proc. Sympos. Appl. Math. 42, Amer. Math. Soc., 1990, 49-74.
- [6] I. Shparlinski, On the distribution of recurring sequences, Problemy Peredachi Informatsii 25 (2) (1989), 46-53 (in Russian).
- [7] I. Shparlinski, On the distribution of values of recurring sequences and the Bell numbers in finite fields, European J. Combin. 12 (1991), 81-87

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.