Values of linear recurring sequences of vectors over finite fields

Gary L. Mullen; Igor Shparlinski

Acta Arithmetica (1993)

  • Volume: 65, Issue: 3, page 221-226
  • ISSN: 0065-1036

How to cite

top

Gary L. Mullen, and Igor Shparlinski. "Values of linear recurring sequences of vectors over finite fields." Acta Arithmetica 65.3 (1993): 221-226. <http://eudml.org/doc/206575>.

@article{GaryL1993,
author = {Gary L. Mullen, Igor Shparlinski},
journal = {Acta Arithmetica},
keywords = {linear recurring sequence; lower bounds; finite field},
language = {eng},
number = {3},
pages = {221-226},
title = {Values of linear recurring sequences of vectors over finite fields},
url = {http://eudml.org/doc/206575},
volume = {65},
year = {1993},
}

TY - JOUR
AU - Gary L. Mullen
AU - Igor Shparlinski
TI - Values of linear recurring sequences of vectors over finite fields
JO - Acta Arithmetica
PY - 1993
VL - 65
IS - 3
SP - 221
EP - 226
LA - eng
KW - linear recurring sequence; lower bounds; finite field
UR - http://eudml.org/doc/206575
ER -

References

top
  1. [1] W.-S. Chou and G. L. Mullen, Generating linear spans over finite fields, Acta Arith. 61 (1992), 183-191. Zbl0728.11066
  2. [2] R. Fitzgerald and J. Yucas, On generating linear spans over GF(p), Congr. Numer. 69 (1989), 55-60. Zbl0688.12013
  3. [3] R. Kannan and R. J. Lipton, Polynomial-time algorithm for the orbit problem, J. Assoc. Comput. Mach. 33 (1986), 808-821. Zbl1326.68162
  4. [4] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Addison-Wesley, Reading, Mass., 1983 (now distributed by Cambridge Univ. Press). Zbl0554.12010
  5. [5] K. S. McCurley, The discrete logarithm problem, in: Cryptology and Computational Number Theory, C. Pomerance (ed.), Proc. Sympos. Appl. Math. 42, Amer. Math. Soc., 1990, 49-74. 
  6. [6] I. Shparlinski, On the distribution of recurring sequences, Problemy Peredachi Informatsii 25 (2) (1989), 46-53 (in Russian). 
  7. [7] I. Shparlinski, On the distribution of values of recurring sequences and the Bell numbers in finite fields, European J. Combin. 12 (1991), 81-87 

NotesEmbed ?

top

You must be logged in to post comments.