A class of algebraic-exponential congruences modulo .
Page 1 Next
Cobeli, C., Vâjâitu, M., Zaharescu, A. (2002)
Acta Mathematica Universitatis Comenianae. New Series
John R. Burke (1995)
Acta Arithmetica
Ö. Ore (1930)
Mathematische Annalen
Ö. Ore (1928)
Mathematische Annalen
Henry B. Mann, Ying Fou Wou (1986)
Monatshefte für Mathematik
Harald NIEDERREITER (1982/1983)
Seminaire de Théorie des Nombres de Bordeaux
W. Lunnon, P. Pleasants, N. Stephens (1979)
Acta Arithmetica
John Knopfmacher (1972)
Journal für die reine und angewandte Mathematik
Wen-Ch'ing Winnie Li, J. Soto-Andrade (1983)
Journal für die reine und angewandte Mathematik
Günter Heimbeck (1984)
Elemente der Mathematik
Wolfgang Ch. Schmid, Reinhard Wolf (1997)
Acta Arithmetica
Boaz Cohen (2021)
Czechoslovak Mathematical Journal
We shall describe how to construct a fundamental solution for the Pell equation over finite fields of characteristic . Especially, a complete description of the structure of these fundamental solutions will be given using Chebyshev polynomials. Furthermore, we shall describe the structure of the solutions of the general Pell equation .
Shader, Leslie E. (1973)
Portugaliae mathematica
Boris Adamczewski, Jason P. Bell (2013)
Annales scientifiques de l'École Normale Supérieure
We prove a quantitative version of a result of Furstenberg [20] and Deligne [14] stating that the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime the reduction modulo of the diagonal of a multivariate algebraic power series with integer coefficients is an algebraic power series of degree at most and height at most , where is an effective constant that only depends on...
J. Duttlinger (1974)
Journal für die reine und angewandte Mathematik
Harald Niederreiter, Jau-Shyong Shiue (1980)
Acta Arithmetica
Gerasimos C. Meletiou (1993)
Archivum Mathematicum
For generator of the multiplicative group of the field , the discrete logarithm of an element of the field to the base , is that integer , . The -ary digits which represent can be described with extremely simple polynomial forms.
Cusick, Thomas W. (1998)
The Electronic Journal of Combinatorics [electronic only]
John Perkins (1971)
Acta Arithmetica
Ken B. Dunn, Rudolf Lidl (1982)
Czechoslovak Mathematical Journal
Page 1 Next