# On the non-triviality of the basic Iwasawa λ-invariant for an infinitude of imaginary quadratic fields

Acta Arithmetica (1993)

- Volume: 65, Issue: 3, page 243-248
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topJonathan W. Sands. "On the non-triviality of the basic Iwasawa λ-invariant for an infinitude of imaginary quadratic fields." Acta Arithmetica 65.3 (1993): 243-248. <http://eudml.org/doc/206577>.

@article{JonathanW1993,

author = {Jonathan W. Sands},

journal = {Acta Arithmetica},

keywords = {construction; imaginary quadratic fields; Iwasawa invariant; discriminant},

language = {eng},

number = {3},

pages = {243-248},

title = {On the non-triviality of the basic Iwasawa λ-invariant for an infinitude of imaginary quadratic fields},

url = {http://eudml.org/doc/206577},

volume = {65},

year = {1993},

}

TY - JOUR

AU - Jonathan W. Sands

TI - On the non-triviality of the basic Iwasawa λ-invariant for an infinitude of imaginary quadratic fields

JO - Acta Arithmetica

PY - 1993

VL - 65

IS - 3

SP - 243

EP - 248

LA - eng

KW - construction; imaginary quadratic fields; Iwasawa invariant; discriminant

UR - http://eudml.org/doc/206577

ER -

## References

top- [1] D. S. Dummit, D. Ford, H. Kisilevsky and J. W. Sands, Computation of Iwasawa lambda invariants for imaginary quadratic fields, J. Number Theory 37 (1991), 100-121. Zbl0722.11052
- [2] L. J. Federer and B. H. Gross (Appendix by W. Sinnott), Regulators and Iwasawa modules, Invent. Math. 62 (1981), 443-457. Zbl0468.12005
- [3] B. Ferrero and L. Washington, The Iwasawa invariant μₚ vanishes for abelian number fields, Ann. of Math. 109 (1979), 377-395. Zbl0443.12001
- [4] R. Gold, The nontriviality of certain ${\mathbb{Z}}_{l}$-extensions, J. Number Theory 6 (1974), 269-273.
- [5] K. Horie, A note on basic Iwasawa λ-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31-38.
- [6] N. Jochnowitz, A p-adic conjecture about derivatives of L-series attached to modular forms, to appear.
- [7] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76. Zbl0222.12003

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.