Solving a linear equation in a set of integers I
Acta Arithmetica (1993)
- Volume: 65, Issue: 3, page 259-282
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- M. Ajtai, J. Komlós and E. Szemerédi (1981), A dense infinite Sidon sequence, European J. Combin. 2, 1-11. Zbl0474.10038
- F. A. Behrend (1946), On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A. 32, 331-333. Zbl0060.10302
- R. C. Bose (1942), An affine analogue of Singer's theorem, J. Indian Math. Soc. 6, 1-15. Zbl0063.00542
- R. C. Bose and S. Chowla (1962-63), Theorems in the additive theory of numbers, Comment. Math. Helv. 37, 141-147.
- P. Erdős and P. Turán (1941), On a problem of Sidon in additive number theory and some related problems, J. London Math. Soc. 16, 212-215. Zbl67.0984.03
- H. Halberstam and K. F. Roth (1966), Sequences, Clarendon, London (2nd ed. Springer, New York, 1983).
- D. R. Heath-Brown (1987), Integer sets containing no arithmetic progression, J. London Math. Soc. 35, 385-394. Zbl0589.10062
- J. Komlós, M. Sulyok and E. Szemerédi (1975), Linear problems in combinatorial number theory, Acta Math. Hungar. 26, 113-121. Zbl0303.10058
- B. Lindström (1969), An inequality for B₂-sequences, J. Combin. Theory 6, 211-212. L. Moser (1953), On non-averaging sets of integers , Canadian J. Math. 5, 245-252.
- K. F. Roth (1953), On certain sets of integers, J. London Math. Soc. 28, 104-109. Zbl0050.04002
- J. Singer (1938), A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43, 377-385. Zbl64.0972.04
- A. Stöhr (1955), Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe, J. Reine Angew. Math. 194, 40-65, 111-140. Zbl0066.03101
- E. Szemerédi (1975), On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27, 199-245. Zbl0303.10056
- E. Szemerédi (1990), Integer sets containing no arithmetic progressions, Acta Math. Hungar. 56, 155-158. Zbl0721.11007