On sets of integers containing k elements in arithmetic progression
Acta Arithmetica (1975)
- Volume: 27, Issue: 1, page 199-245
- ISSN: 0065-1036
Access Full Article
topHow to cite
topSzemerédi, E.. "On sets of integers containing k elements in arithmetic progression." Acta Arithmetica 27.1 (1975): 199-245. <http://eudml.org/doc/205339>.
@article{Szemerédi1975,
author = {Szemerédi, E.},
journal = {Acta Arithmetica},
keywords = {arithmetic progressions},
language = {eng},
number = {1},
pages = {199-245},
title = {On sets of integers containing k elements in arithmetic progression},
url = {http://eudml.org/doc/205339},
volume = {27},
year = {1975},
}
TY - JOUR
AU - Szemerédi, E.
TI - On sets of integers containing k elements in arithmetic progression
JO - Acta Arithmetica
PY - 1975
VL - 27
IS - 1
SP - 199
EP - 245
LA - eng
KW - arithmetic progressions
UR - http://eudml.org/doc/205339
ER -
Citations in EuDML Documents
top- Jean-Paul Thouvenot, La démonstration de Furstenberg du théorème de Szemerédi sur les progressions arithmétiques
- Vitaly Bergelson, Bernard Host, Randall McCutcheon, Franiçois Parreau, Aspects of uniformity in recurrence
- Milan Paštéka, Tibor Šalát, Buck's measure density and sets of positive integers containing arithmetic progression
- Jean Coquet, Pierre Liardet, Répartitions uniformes des suites et indépendance statistique
- Bernard Host, Progressions arithmétiques dans les nombres premiers
- Paul Erdös, Problèmes extrémaux et combinatoires en théorie des nombres
- Yoshiharu Kohayakawa, Tomasz Łuczak, Vojtěch Rödl, Arithmetic progressions of length three in subsets of a random set
- S. A. Burr, P. Erdős, R. L. Graham, W. Wen-Ching Li, Complete sequences of sets of integer powers
- Imre Z. Ruzsa, Solving a linear equation in a set of integers II
- Imre Z. Ruzsa, Solving a linear equation in a set of integers I
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.