The number of solutions to cubic Thue inequalities

Jeffrey Lin Thunder

Acta Arithmetica (1994)

  • Volume: 66, Issue: 3, page 237-243
  • ISSN: 0065-1036

How to cite

top

Jeffrey Lin Thunder. "The number of solutions to cubic Thue inequalities." Acta Arithmetica 66.3 (1994): 237-243. <http://eudml.org/doc/206603>.

@article{JeffreyLinThunder1994,
author = {Jeffrey Lin Thunder},
journal = {Acta Arithmetica},
keywords = {Thue equations; number of solutions; Mahler's asymptotic formula; Schmidt's conjecture; cubic forms},
language = {eng},
number = {3},
pages = {237-243},
title = {The number of solutions to cubic Thue inequalities},
url = {http://eudml.org/doc/206603},
volume = {66},
year = {1994},
}

TY - JOUR
AU - Jeffrey Lin Thunder
TI - The number of solutions to cubic Thue inequalities
JO - Acta Arithmetica
PY - 1994
VL - 66
IS - 3
SP - 237
EP - 243
LA - eng
KW - Thue equations; number of solutions; Mahler's asymptotic formula; Schmidt's conjecture; cubic forms
UR - http://eudml.org/doc/206603
ER -

References

top
  1. [B1] M. Bean, Areas of plane regions defined by binary forms, Ph.D. thesis, University of Waterloo, 1992. 
  2. [B2] M. Bean, Bounds for the number of solutions of the Thue equation, M. thesis, University of Waterloo, 1988. 
  3. [E] J. H. Evertse, Estimates for reduced binary forms, J. Reine Angew. Math. 434 (1993), 159-190. Zbl0763.11012
  4. [EG] J. H. Evertse and K. Győry, Effective finiteness results for binary forms, Compositio Math. 79 (1991), 169-204. Zbl0746.11020
  5. [M1] K. Mahler, Zur Approximation algebraischer Zahlen III, Acta Math. 62 (1934), 91-166. Zbl60.0159.04
  6. [M2] K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1969), 257-262. 
  7. [S] W. Schmidt, Diophantine Approximations and Diophantine Equations, Lecture Notes in Math. 1467, Springer, New York, 1991. Zbl0754.11020
  8. [T] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284-305. 

NotesEmbed ?

top

You must be logged in to post comments.