The number of solutions to cubic Thue inequalities
Acta Arithmetica (1994)
- Volume: 66, Issue: 3, page 237-243
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [B1] M. Bean, Areas of plane regions defined by binary forms, Ph.D. thesis, University of Waterloo, 1992.
- [B2] M. Bean, Bounds for the number of solutions of the Thue equation, M. thesis, University of Waterloo, 1988.
- [E] J. H. Evertse, Estimates for reduced binary forms, J. Reine Angew. Math. 434 (1993), 159-190. Zbl0763.11012
- [EG] J. H. Evertse and K. Győry, Effective finiteness results for binary forms, Compositio Math. 79 (1991), 169-204. Zbl0746.11020
- [M1] K. Mahler, Zur Approximation algebraischer Zahlen III, Acta Math. 62 (1934), 91-166. Zbl60.0159.04
- [M2] K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1969), 257-262.
- [S] W. Schmidt, Diophantine Approximations and Diophantine Equations, Lecture Notes in Math. 1467, Springer, New York, 1991. Zbl0754.11020
- [T] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284-305.