Effective finiteness results for binary forms with given discriminant

J. H. Evertse; K. Gyory

Compositio Mathematica (1991)

  • Volume: 79, Issue: 2, page 169-204
  • ISSN: 0010-437X

How to cite


Evertse, J. H., and Gyory, K.. "Effective finiteness results for binary forms with given discriminant." Compositio Mathematica 79.2 (1991): 169-204. <http://eudml.org/doc/90103>.

author = {Evertse, J. H., Gyory, K.},
journal = {Compositio Mathematica},
keywords = {Z-equivalence; binary forms; -integral coefficients; discriminant form equations; finiteness theorems},
language = {eng},
number = {2},
pages = {169-204},
publisher = {Kluwer Academic Publishers},
title = {Effective finiteness results for binary forms with given discriminant},
url = {http://eudml.org/doc/90103},
volume = {79},
year = {1991},

AU - Evertse, J. H.
AU - Gyory, K.
TI - Effective finiteness results for binary forms with given discriminant
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 79
IS - 2
SP - 169
EP - 204
LA - eng
KW - Z-equivalence; binary forms; -integral coefficients; discriminant form equations; finiteness theorems
UR - http://eudml.org/doc/90103
ER -


  1. [1] A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser.A263 (1968), 173-191. Zbl0157.09702MR228424
  2. [2] B.J. Birch and J.R. Merriman, Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc.25 (1972), 385-394. Zbl0248.12002MR306119
  3. [3] J. Coates, An effective p-adic analogue of a theorem of Thue, Acta Arith.15 (1969), 275-305. Zbl0221.10025MR242768
  4. [4] J.H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math.75 (1984), 561-584. Zbl0521.10015MR735341
  5. [5] J.H. Evertse and K. Györy, Thue-Mahler equations with a small number of solutions, J. Reine Angew. Math.399 (1989), 60-80. Zbl0675.10009MR1004133
  6. [6] C.F. Gauss, Disquisitiones Arithmeticae, 1801 (German translation, 2nd edn, reprinted, Chelsea Publ.New York, 1981). 
  7. [7] K. Györy, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith.23 (1973), 419-426. Zbl0269.12001MR437489
  8. [8] K. Györy, Sur les polynômes à coefficients entiers et de discriminant donné. II. Publ. Math. Debrecen21 (1974), 125-144. Zbl0303.12001MR437490
  9. [9] K. Györy, On polynomials with integer coefficients and given discriminant, V, p-adic generalizations, Acta Math. Acad. Sci. Hungar.32 (1978), 175-190. Zbl0402.10053MR498497
  10. [10] K. Györy, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helvetici54 (1979), 583-600. Zbl0437.12004MR552678
  11. [11] K. Györy, On the solutions of linear diophantine equations in algebraic integers of bounded norm, Ann. Univ. Sci. Budapest. Eötvös. Sect. Math.22-23 (1979-80), 225-233. Zbl0442.10010MR588441
  12. [12] K. Györy, Effective finiteness theorems for Diophantine problems and their applications, Academic Doctor's thesis, Debrecen, 1983 (in Hungarian). 
  13. [13] K. Györy, Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely generated domains, J. Reine Angew. Math.346 (1984), 54-100. Zbl0519.13008MR727397
  14. [14] K. Györy and Z.Z. Papp, On discriminant form and index form equations, Studia Scient. Math. Hung.12 (1977), 47-60. Zbl0434.10014MR568462
  15. [15] C. Hermite, Sur l'introduction des variables continues dans la théorie des nombres, J. Reine Angew. Math.41 (1851), 191-216. 
  16. [16] A. Korkine and G. Zolotareff, Sur les formes quadratiques, Math. Ann.6 (1873), 366-389. MR1509828JFM05.0109.01
  17. [17] J.L. Lagrange, Recherches d'arithmétique, Nouv. Mém. Acad. Berlin, 1773, 265-312, Oeuvres, III, 693-758. 
  18. [18] S. Lang, Algebraic Number Theory, Addison-Wesley Publ., Reading, Mass., 1970. Zbl0211.38404MR282947
  19. [19] S. Lang, Fundamentals of Diophantine Geometry, Springer Verlag, New York, 1983. Zbl0528.14013MR715605
  20. [20] D.J. Lewis and K. Mahler, Representation of integers by binary forms, Acta. Arith.6 (1961), 333-363. Zbl0102.03601MR120195
  21. [21] K. Mahler, Über die Annäherung algebraischer Zahlen durch periodische Algorithmen, Acta Math.68 (1937), 109-144. Zbl0017.05701JFM63.0154.01
  22. [22] A. Markoff, Sur les forms quadratiques binaires indéfinies, Math. Ann.15 (1879), 381-406. JFM11.0147.01
  23. [23] L.J. Mordell, On numbers represented by binary cubic forms, Proc. London Math. Soc.48 (1945), 198-228. Zbl0060.12002MR9610
  24. [24] C.L. Siegel(Under the pseudonym X), The integer solutions of the equation y2 = axn + bxn-1 + ... +k, J. London Math. Soc.1 (1926), 66-68. JFM52.0149.02
  25. [25] C.L. Siegel, Abschätzung von Einheiten, Nachr. Göttingen Math. Phys. Kl. (1969), 71-86. Zbl0186.36703MR249395
  26. [26] H.M. Stark, Some effective cases of the Brauer-Siegel Theorem, Invent. Math.23 (1974), 135-152. Zbl0278.12005MR342472
  27. [27] E. Weiss, Algebraic Number Theory, McGraw-Hill, New York, 1963. Zbl0115.03601MR159805
  28. [28] R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math.62 (1981), 367-380. Zbl0456.12003MR604833

Citations in EuDML Documents

  1. Jeffrey Lin Thunder, The number of solutions to cubic Thue inequalities
  2. Jung Kyu Canci, Rational periodic points for quadratic maps
  3. J. H. Evertse, K. Győry, Effective finiteness theorems for decomposable forms of given discriminant
  4. K. Győry, Min Ru, Integer solutions of a sequence of decomposable form inequalities
  5. J. H. Evertse, K. Györy, Lower bounds for resultants, I
  6. Aaron Levin, Siegel’s theorem and the Shafarevich conjecture
  7. Yann Bugeaud, Kálmán Győry, Bounds for the solutions of unit equations
  8. Rafael von Känel, An effective proof of the hyperelliptic Shafarevich conjecture

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.