Effective finiteness results for binary forms with given discriminant
Compositio Mathematica (1991)
- Volume: 79, Issue: 2, page 169-204
- ISSN: 0010-437X
Access Full Article
topHow to cite
topEvertse, J. H., and Gyory, K.. "Effective finiteness results for binary forms with given discriminant." Compositio Mathematica 79.2 (1991): 169-204. <http://eudml.org/doc/90103>.
@article{Evertse1991,
author = {Evertse, J. H., Gyory, K.},
journal = {Compositio Mathematica},
keywords = {Z-equivalence; binary forms; -integral coefficients; discriminant form equations; finiteness theorems},
language = {eng},
number = {2},
pages = {169-204},
publisher = {Kluwer Academic Publishers},
title = {Effective finiteness results for binary forms with given discriminant},
url = {http://eudml.org/doc/90103},
volume = {79},
year = {1991},
}
TY - JOUR
AU - Evertse, J. H.
AU - Gyory, K.
TI - Effective finiteness results for binary forms with given discriminant
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 79
IS - 2
SP - 169
EP - 204
LA - eng
KW - Z-equivalence; binary forms; -integral coefficients; discriminant form equations; finiteness theorems
UR - http://eudml.org/doc/90103
ER -
References
top- [1] A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser.A263 (1968), 173-191. Zbl0157.09702MR228424
- [2] B.J. Birch and J.R. Merriman, Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc.25 (1972), 385-394. Zbl0248.12002MR306119
- [3] J. Coates, An effective p-adic analogue of a theorem of Thue, Acta Arith.15 (1969), 275-305. Zbl0221.10025MR242768
- [4] J.H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math.75 (1984), 561-584. Zbl0521.10015MR735341
- [5] J.H. Evertse and K. Györy, Thue-Mahler equations with a small number of solutions, J. Reine Angew. Math.399 (1989), 60-80. Zbl0675.10009MR1004133
- [6] C.F. Gauss, Disquisitiones Arithmeticae, 1801 (German translation, 2nd edn, reprinted, Chelsea Publ.New York, 1981).
- [7] K. Györy, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith.23 (1973), 419-426. Zbl0269.12001MR437489
- [8] K. Györy, Sur les polynômes à coefficients entiers et de discriminant donné. II. Publ. Math. Debrecen21 (1974), 125-144. Zbl0303.12001MR437490
- [9] K. Györy, On polynomials with integer coefficients and given discriminant, V, p-adic generalizations, Acta Math. Acad. Sci. Hungar.32 (1978), 175-190. Zbl0402.10053MR498497
- [10] K. Györy, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helvetici54 (1979), 583-600. Zbl0437.12004MR552678
- [11] K. Györy, On the solutions of linear diophantine equations in algebraic integers of bounded norm, Ann. Univ. Sci. Budapest. Eötvös. Sect. Math.22-23 (1979-80), 225-233. Zbl0442.10010MR588441
- [12] K. Györy, Effective finiteness theorems for Diophantine problems and their applications, Academic Doctor's thesis, Debrecen, 1983 (in Hungarian).
- [13] K. Györy, Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely generated domains, J. Reine Angew. Math.346 (1984), 54-100. Zbl0519.13008MR727397
- [14] K. Györy and Z.Z. Papp, On discriminant form and index form equations, Studia Scient. Math. Hung.12 (1977), 47-60. Zbl0434.10014MR568462
- [15] C. Hermite, Sur l'introduction des variables continues dans la théorie des nombres, J. Reine Angew. Math.41 (1851), 191-216.
- [16] A. Korkine and G. Zolotareff, Sur les formes quadratiques, Math. Ann.6 (1873), 366-389. MR1509828JFM05.0109.01
- [17] J.L. Lagrange, Recherches d'arithmétique, Nouv. Mém. Acad. Berlin, 1773, 265-312, Oeuvres, III, 693-758.
- [18] S. Lang, Algebraic Number Theory, Addison-Wesley Publ., Reading, Mass., 1970. Zbl0211.38404MR282947
- [19] S. Lang, Fundamentals of Diophantine Geometry, Springer Verlag, New York, 1983. Zbl0528.14013MR715605
- [20] D.J. Lewis and K. Mahler, Representation of integers by binary forms, Acta. Arith.6 (1961), 333-363. Zbl0102.03601MR120195
- [21] K. Mahler, Über die Annäherung algebraischer Zahlen durch periodische Algorithmen, Acta Math.68 (1937), 109-144. Zbl0017.05701JFM63.0154.01
- [22] A. Markoff, Sur les forms quadratiques binaires indéfinies, Math. Ann.15 (1879), 381-406. JFM11.0147.01
- [23] L.J. Mordell, On numbers represented by binary cubic forms, Proc. London Math. Soc.48 (1945), 198-228. Zbl0060.12002MR9610
- [24] C.L. Siegel(Under the pseudonym X), The integer solutions of the equation y2 = axn + bxn-1 + ... +k, J. London Math. Soc.1 (1926), 66-68. JFM52.0149.02
- [25] C.L. Siegel, Abschätzung von Einheiten, Nachr. Göttingen Math. Phys. Kl. (1969), 71-86. Zbl0186.36703MR249395
- [26] H.M. Stark, Some effective cases of the Brauer-Siegel Theorem, Invent. Math.23 (1974), 135-152. Zbl0278.12005MR342472
- [27] E. Weiss, Algebraic Number Theory, McGraw-Hill, New York, 1963. Zbl0115.03601MR159805
- [28] R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math.62 (1981), 367-380. Zbl0456.12003MR604833
Citations in EuDML Documents
top- Jeffrey Lin Thunder, The number of solutions to cubic Thue inequalities
- Jung Kyu Canci, Rational periodic points for quadratic maps
- J. H. Evertse, K. Győry, Effective finiteness theorems for decomposable forms of given discriminant
- K. Győry, Min Ru, Integer solutions of a sequence of decomposable form inequalities
- J. H. Evertse, K. Györy, Lower bounds for resultants, I
- Aaron Levin, Siegel’s theorem and the Shafarevich conjecture
- Yann Bugeaud, Kálmán Győry, Bounds for the solutions of unit equations
- Rafael von Känel, An effective proof of the hyperelliptic Shafarevich conjecture
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.