Weakly Kronecker equivalent number fields
Acta Arithmetica (1994)
- Volume: 67, Issue: 4, page 295-312
- ISSN: 0065-1036
Access Full Article
topHow to cite
topManfred Lochter. "Weakly Kronecker equivalent number fields." Acta Arithmetica 67.4 (1994): 295-312. <http://eudml.org/doc/206633>.
@article{ManfredLochter1994,
author = {Manfred Lochter},
journal = {Acta Arithmetica},
keywords = {weakly Kronecker equivalence classes; class groups},
language = {eng},
number = {4},
pages = {295-312},
title = {Weakly Kronecker equivalent number fields},
url = {http://eudml.org/doc/206633},
volume = {67},
year = {1994},
}
TY - JOUR
AU - Manfred Lochter
TI - Weakly Kronecker equivalent number fields
JO - Acta Arithmetica
PY - 1994
VL - 67
IS - 4
SP - 295
EP - 312
LA - eng
KW - weakly Kronecker equivalence classes; class groups
UR - http://eudml.org/doc/206633
ER -
References
top- [1] B. Fein, W. Kantor and M. Schacher, Relative Brauer groups II, J. Reine Angew. Math. 328 (1981), 374-403. Zbl0457.13004
- [2] W. Feit, Some consequences of the classification of finite simple groups, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 175-181. Zbl0454.20014
- [3] R. Guralnick, Zeroes of permutation characters with applications to prime splitting and Brauer groups, J. Algebra 131 (1990), 294-302. Zbl0708.12005
- [4] R. Guralnick and D. Wales, Subgroups inducing the same permutation representation II, J. Algebra 96 (1985), 94-113. Zbl0577.20005
- [5] W. Jehne, Kronecker classes of algebraic number fields, J. Number Theory 9 (1977), 279-320. Zbl0392.12003
- [6] W. Jehne, On Kronecker classes of atomic extensions, Proc. London Math. Soc. (3) 34 (1977), 32-64. Zbl0356.12015
- [7] N. Klingen, Zahlkörper mit gleicher Primzerlegung, J. Reine Angew. Math. 299/300 (1978), 342-384.
- [8] N. Klingen, Atomare Kronecker-Klassen mit speziellen Galoisgruppen, Abh. Math. Sem. Univ. Hamburg (1979), 42-53.
- [9] N. Klingen, Rigidity of decomposition laws and number fields, J. Austral. Math. Soc. Ser. A 51 (1991), 171-186. Zbl0745.11047
- [10] K. Komatsu, Einige Bemerkungen über Dedekindsche Zetafunktionen und K-Gruppe, Arch. Math. (Basel) 54 (1990), 164-165.
- [11] M. Lochter, Neue zahlentheoretische Aspekte der Kronecker-Äquivalenz, thesis, Köln, 1992.
- [12] M. Lochter, New characterizations of Kronecker equivalence, J. Number Theory, to appear.
- [13] J. Neukirch, Class Field Theory, Springer, 1986. Zbl0587.12001
- [14] R. Perlis, On the equation , J. Number Theory 9 (1977), 342-360. Zbl0389.12006
- [15] Ch. E. Praeger, Covering subgroups of groups and Kronecker classes of fields, J. Algebra 118 (1988), 455-463. Zbl0667.12004
- [16] Ch. E. Praeger, On octic field extensions and a problem in group theory, in: Group Theory, Proceedings of the 1987 Singapore Conference, Walter de Gruyter, Berlin, 1989, 443-463.
- [17] Ch. E. Praeger, Kronecker classes of field extensions of small degree, J. Austral. Math. Soc. Ser. A 50 (1991), 297-315. Zbl0733.12007
- [18] J. Saxl, On a question of W. Jehne concerning covering subgroups of groups and Kronecker classes of fields, J. London Math. Soc. (2) 38 (1988), 243-249. Zbl0663.12010
- [19] V. Schulze, Kronecker-äquivalente Körpererweiterungen und p-Ränge, J. Reine Angew. Math. 328 (1981), 9-21.
- [20] J. P. Serre, Linear Representations of Finite Groups, Springer, Berlin, 1977. Zbl0355.20006
- [21] L. Stern, On the equality of norm groups of global fields, J. Number Theory 36 (1990), 108-126. Zbl0718.11056
- [22] B. L. van der Waerden, Die Seltenheit der Gleichungen mit Affekt, Math. Ann. 109 (1934), 13-16. Zbl0007.39101
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.