Minimum and maximum order of magnitude of the discrepancy of (nα)

C. Baxa; J. Schoissengeier

Acta Arithmetica (1994)

  • Volume: 68, Issue: 3, page 281-290
  • ISSN: 0065-1036

How to cite

top

C. Baxa, and J. Schoissengeier. "Minimum and maximum order of magnitude of the discrepancy of (nα)." Acta Arithmetica 68.3 (1994): 281-290. <http://eudml.org/doc/206661>.

@article{C1994,
author = {C. Baxa, J. Schoissengeier},
journal = {Acta Arithmetica},
keywords = {discrepancy; fractional part; maximum order; Hurwitz continued fractions},
language = {eng},
number = {3},
pages = {281-290},
title = {Minimum and maximum order of magnitude of the discrepancy of (nα)},
url = {http://eudml.org/doc/206661},
volume = {68},
year = {1994},
}

TY - JOUR
AU - C. Baxa
AU - J. Schoissengeier
TI - Minimum and maximum order of magnitude of the discrepancy of (nα)
JO - Acta Arithmetica
PY - 1994
VL - 68
IS - 3
SP - 281
EP - 290
LA - eng
KW - discrepancy; fractional part; maximum order; Hurwitz continued fractions
UR - http://eudml.org/doc/206661
ER -

References

top
  1. [1] C. Baxa, Die maximale Größ enordnung der Diskrepanz der Folge ( n α ) n 1 , Dissertation, Universität Wien, 1993. 
  2. [2] C. Baxa, On the discrepancy of the sequence (nα), to appear. 
  3. [3] H. Behnke, Über die Verteilung von Irrationalitäten mod 1, Abh. Math. Sem. Univ. Hamburg 1 (1922), 252-267. Zbl48.0186.01
  4. [4] H. Behnke, Zur Theorie der diophantischen Approximationen I, Abh. Math. Sem. Univ. Hamburg 3 (1924), 261-318. Zbl50.0124.03
  5. [5] P. Bohl, Über ein in der Theorie der säkularen Störungen vorkommendes Problem, J. Reine Angew. Math. 135 (1909), 189-283. Zbl40.1005.03
  6. [6] T. W. Cusick and M. E. Flahive, The Markoff and Lagrange Spectra, Math. Surveys Monographs 30, Amer. Math. Soc., Providence, Rhode Island, 1989. Zbl0685.10023
  7. [7] Y. Dupain, Répartition et discrépance, Thèse, Université de Bordeaux I, 1978. 
  8. [8] Y. Dupain, Discrépance de la suite ({n((1+√5)/2)}), Ann. Inst. Fourier (Grenoble) 29 (1979), 81-106. 
  9. [9] Y. Dupain and V. T. Sós, On the discrepancy of (nα) sequences, in: Topics in Classical Number Theory, Vol. 1, Colloq. Math. Soc. János Bolyai 34, G. Halász (ed.), North-Holland, Amsterdam, 1984, 355-387. 
  10. [10] G. H. Hardy and J. E. Littlewood, Some problems of Diophantine Approximation: The lattice points of a right-angled triangle II, Abh. Math. Sem. Univ. Hamburg 1 (1922), 212-249. 
  11. [11] E. Hecke, Über analytische Funktionen und die Verteilung von Zahlen mod. Eins, Abh. Math. Sem. Univ. Hamburg 1 (1922) 54-76. Zbl48.0197.03
  12. [12] J. Lesca, Sur la répartition modulo 1 de la suite nα, Acta Arith. 20 (1972), 345-352. Zbl0239.10018
  13. [13] H. Niederreiter, Application of diophantine approximation to numerical integration, in: Diophantine Approximation and Its Applications, C. F. Osgood (ed.), Academic Press, New York, 1973, 129-199. 
  14. [14] A. Ostrowski, Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Sem. Univ. Hamburg 1 (1922), 77-98. Zbl48.0185.01
  15. [15] L. Ramshaw, On the discrepancy of the sequence formed by the multiples of an irrational number, J. Number Theory 13 (1981), 138-175. Zbl0458.10035
  16. [16] W. M. Schmidt, Irregularities of distribution VII, Acta Arith. 21 (1972), 45-50. Zbl0244.10035
  17. [17] J. Schoißengeier, On the discrepancy of (nα), Acta Arith. 44 (1984), 241-279. Zbl0506.10031
  18. [18] J. Schoißengeier, On the discrepancy of (nα) II, J. Number Theory 24 (1986), 54-64. Zbl0588.10058
  19. [19] J. Schoißengeier, Abschätzungen für n N B ( n α ) , Monatsh. Math. 102 (1986), 59-77. 
  20. [20] J. Schoißengeier, The discrepancy of ( n α ) n 1 , Math. Ann. 296 (1993), 529-545. Zbl0786.11043
  21. [21] W. Sierpi/nski, Sur la valeur asymptotique d'une certaine somme, Bull. Int. Acad. Polon. Sci. (Cracovie) A (1910), 9-11. Zbl41.0282.01
  22. [22] W. Sierpi/nski, On the asymptotic value of a certain sum, Rozprawy Akademii Umiej/etno/sci w Krakowie, Wydział mat. przyrod. 50 (1910), 1-10 (in Polish). 
  23. [23] V. T. Sós, On the theory of diophantine approximation II (inhomogeneous problems), Acta Math. Acad. Sci. Hungar. 9 (1958), 229-241. Zbl0086.03902
  24. [24] V. T. Sós, On strong irregularities of the distribution of {nα} sequences, in: Studies in Pure Mathematics, P. Erdős (ed.), Birkhäuser, Boston, 1983, 685-700. 
  25. [25] H. Weyl, Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene, Rend. Circ. Mat. Palermo 30 (1910), 377-407. Zbl41.0528.02
  26. [26] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352 Zbl46.0278.06

NotesEmbed ?

top

You must be logged in to post comments.