Minimum and maximum order of magnitude of the discrepancy of (nα)

C. Baxa; J. Schoissengeier

Acta Arithmetica (1994)

  • Volume: 68, Issue: 3, page 281-290
  • ISSN: 0065-1036

How to cite

top

C. Baxa, and J. Schoissengeier. "Minimum and maximum order of magnitude of the discrepancy of (nα)." Acta Arithmetica 68.3 (1994): 281-290. <http://eudml.org/doc/206661>.

@article{C1994,
author = {C. Baxa, J. Schoissengeier},
journal = {Acta Arithmetica},
keywords = {discrepancy; fractional part; maximum order; Hurwitz continued fractions},
language = {eng},
number = {3},
pages = {281-290},
title = {Minimum and maximum order of magnitude of the discrepancy of (nα)},
url = {http://eudml.org/doc/206661},
volume = {68},
year = {1994},
}

TY - JOUR
AU - C. Baxa
AU - J. Schoissengeier
TI - Minimum and maximum order of magnitude of the discrepancy of (nα)
JO - Acta Arithmetica
PY - 1994
VL - 68
IS - 3
SP - 281
EP - 290
LA - eng
KW - discrepancy; fractional part; maximum order; Hurwitz continued fractions
UR - http://eudml.org/doc/206661
ER -

References

top
  1. [1] C. Baxa, Die maximale Größ enordnung der Diskrepanz der Folge ( n α ) n 1 , Dissertation, Universität Wien, 1993. 
  2. [2] C. Baxa, On the discrepancy of the sequence (nα), to appear. 
  3. [3] H. Behnke, Über die Verteilung von Irrationalitäten mod 1, Abh. Math. Sem. Univ. Hamburg 1 (1922), 252-267. Zbl48.0186.01
  4. [4] H. Behnke, Zur Theorie der diophantischen Approximationen I, Abh. Math. Sem. Univ. Hamburg 3 (1924), 261-318. Zbl50.0124.03
  5. [5] P. Bohl, Über ein in der Theorie der säkularen Störungen vorkommendes Problem, J. Reine Angew. Math. 135 (1909), 189-283. Zbl40.1005.03
  6. [6] T. W. Cusick and M. E. Flahive, The Markoff and Lagrange Spectra, Math. Surveys Monographs 30, Amer. Math. Soc., Providence, Rhode Island, 1989. Zbl0685.10023
  7. [7] Y. Dupain, Répartition et discrépance, Thèse, Université de Bordeaux I, 1978. 
  8. [8] Y. Dupain, Discrépance de la suite ({n((1+√5)/2)}), Ann. Inst. Fourier (Grenoble) 29 (1979), 81-106. 
  9. [9] Y. Dupain and V. T. Sós, On the discrepancy of (nα) sequences, in: Topics in Classical Number Theory, Vol. 1, Colloq. Math. Soc. János Bolyai 34, G. Halász (ed.), North-Holland, Amsterdam, 1984, 355-387. 
  10. [10] G. H. Hardy and J. E. Littlewood, Some problems of Diophantine Approximation: The lattice points of a right-angled triangle II, Abh. Math. Sem. Univ. Hamburg 1 (1922), 212-249. 
  11. [11] E. Hecke, Über analytische Funktionen und die Verteilung von Zahlen mod. Eins, Abh. Math. Sem. Univ. Hamburg 1 (1922) 54-76. Zbl48.0197.03
  12. [12] J. Lesca, Sur la répartition modulo 1 de la suite nα, Acta Arith. 20 (1972), 345-352. Zbl0239.10018
  13. [13] H. Niederreiter, Application of diophantine approximation to numerical integration, in: Diophantine Approximation and Its Applications, C. F. Osgood (ed.), Academic Press, New York, 1973, 129-199. 
  14. [14] A. Ostrowski, Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Sem. Univ. Hamburg 1 (1922), 77-98. Zbl48.0185.01
  15. [15] L. Ramshaw, On the discrepancy of the sequence formed by the multiples of an irrational number, J. Number Theory 13 (1981), 138-175. Zbl0458.10035
  16. [16] W. M. Schmidt, Irregularities of distribution VII, Acta Arith. 21 (1972), 45-50. Zbl0244.10035
  17. [17] J. Schoißengeier, On the discrepancy of (nα), Acta Arith. 44 (1984), 241-279. Zbl0506.10031
  18. [18] J. Schoißengeier, On the discrepancy of (nα) II, J. Number Theory 24 (1986), 54-64. Zbl0588.10058
  19. [19] J. Schoißengeier, Abschätzungen für n N B ( n α ) , Monatsh. Math. 102 (1986), 59-77. 
  20. [20] J. Schoißengeier, The discrepancy of ( n α ) n 1 , Math. Ann. 296 (1993), 529-545. Zbl0786.11043
  21. [21] W. Sierpi/nski, Sur la valeur asymptotique d'une certaine somme, Bull. Int. Acad. Polon. Sci. (Cracovie) A (1910), 9-11. Zbl41.0282.01
  22. [22] W. Sierpi/nski, On the asymptotic value of a certain sum, Rozprawy Akademii Umiej/etno/sci w Krakowie, Wydział mat. przyrod. 50 (1910), 1-10 (in Polish). 
  23. [23] V. T. Sós, On the theory of diophantine approximation II (inhomogeneous problems), Acta Math. Acad. Sci. Hungar. 9 (1958), 229-241. Zbl0086.03902
  24. [24] V. T. Sós, On strong irregularities of the distribution of {nα} sequences, in: Studies in Pure Mathematics, P. Erdős (ed.), Birkhäuser, Boston, 1983, 685-700. 
  25. [25] H. Weyl, Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene, Rend. Circ. Mat. Palermo 30 (1910), 377-407. Zbl41.0528.02
  26. [26] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352 Zbl46.0278.06

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.