Discrépance de la suite ( { n α } ) , α = ( 1 + 5 ) / 2

Yves Dupain

Annales de l'institut Fourier (1979)

  • Volume: 29, Issue: 1, page 81-106
  • ISSN: 0373-0956

Abstract

top
Let D * ( N ) be the star-discrepancy of the sequence n 1 + 5 2 . We show that lim sup D * ( N ) Log N = 3 20 Log 1 + 5 2 - 1 = 0 . 31 , which illustrates the fact that our sequence has smaller star-discrepancy than that of van der Corput’s sequence. Our proofs involve continued fraction theory.

How to cite

top

Dupain, Yves. "Discrépance de la suite $(\lbrace n\alpha \rbrace ),\alpha =(1+\sqrt{5})/2$." Annales de l'institut Fourier 29.1 (1979): 81-106. <http://eudml.org/doc/74405>.

@article{Dupain1979,
abstract = {Soit $D^*(N)$ la discrépance “à l’origine” de la suite $\Big (\Big \lbrace n\{1+\sqrt\{5\}\over 2\}\Big \rbrace \Big )$. Nous montrons que $\limsup \{D^*(N)\over \{\rm Log\} N\} = \{3\over 20\} \Big ( \{\rm Log\}\{1+\sqrt\{5\}\over 2\}\Big ) ^\{-1\} = 0.31\cdots $, quantité inférieure à celle correspondant à la suite de van der Corput. Les techniques utilisées sont celles liées au développement en fraction continue.},
author = {Dupain, Yves},
journal = {Annales de l'institut Fourier},
keywords = {star discrepancy; uniform distribution},
language = {fre},
number = {1},
pages = {81-106},
publisher = {Association des Annales de l'Institut Fourier},
title = {Discrépance de la suite $(\lbrace n\alpha \rbrace ),\alpha =(1+\sqrt\{5\})/2$},
url = {http://eudml.org/doc/74405},
volume = {29},
year = {1979},
}

TY - JOUR
AU - Dupain, Yves
TI - Discrépance de la suite $(\lbrace n\alpha \rbrace ),\alpha =(1+\sqrt{5})/2$
JO - Annales de l'institut Fourier
PY - 1979
PB - Association des Annales de l'Institut Fourier
VL - 29
IS - 1
SP - 81
EP - 106
AB - Soit $D^*(N)$ la discrépance “à l’origine” de la suite $\Big (\Big \lbrace n{1+\sqrt{5}\over 2}\Big \rbrace \Big )$. Nous montrons que $\limsup {D^*(N)\over {\rm Log} N} = {3\over 20} \Big ( {\rm Log}{1+\sqrt{5}\over 2}\Big ) ^{-1} = 0.31\cdots $, quantité inférieure à celle correspondant à la suite de van der Corput. Les techniques utilisées sont celles liées au développement en fraction continue.
LA - fre
KW - star discrepancy; uniform distribution
UR - http://eudml.org/doc/74405
ER -

References

top
  1. [1] R. BEJIAN et H. FAURE, Discrépance de la suite de van der Corput, C.R. Acad. Sc., Paris, 285 (1977), 313-316. Zbl0361.10032MR56 #2950
  2. [2] Y. DUPAIN, Intervalles à restes majorés pour la suite {nα}, Acta. Math. Acad. Scient. Hung., t. 29 (3,4) (1977), 289-303. Zbl0372.10026MR57 #3092
  3. [3] L. KUIPERS and H. NIEDERREITER, Uniform distribution of sequences, Wiley Interscience, New York, (1974), 88-132. Zbl0281.10001MR54 #7415
  4. [4] J. LESCA, Sur la répartition modulo 1 des suites {nα}, Acta Arith., 20 (1972), 345-352. Zbl0239.10018MR46 #1723
  5. [5] J. LESCA, Sur la répartition modulo 1 des suites {nα}, Séminaire Delange-Pisot-Poitou, (1966-1967), fascicule 1, exposé n° 2. Zbl0164.05502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.