Mean square limit for lattice points in a sphere

Pavel M. Bleher; Freeman J. Dyson

Acta Arithmetica (1994)

  • Volume: 68, Issue: 4, page 383-393
  • ISSN: 0065-1036

How to cite

top

Pavel M. Bleher, and Freeman J. Dyson. "Mean square limit for lattice points in a sphere." Acta Arithmetica 68.4 (1994): 383-393. <http://eudml.org/doc/206667>.

@article{PavelM1994,
author = {Pavel M. Bleher, Freeman J. Dyson},
journal = {Acta Arithmetica},
language = {eng},
number = {4},
pages = {383-393},
title = {Mean square limit for lattice points in a sphere},
url = {http://eudml.org/doc/206667},
volume = {68},
year = {1994},
}

TY - JOUR
AU - Pavel M. Bleher
AU - Freeman J. Dyson
TI - Mean square limit for lattice points in a sphere
JO - Acta Arithmetica
PY - 1994
VL - 68
IS - 4
SP - 383
EP - 393
LA - eng
UR - http://eudml.org/doc/206667
ER -

References

top
  1. [AP] S. D. Adhikari and Y.-F. S. Pétermann, Lattice points in ellipsoids, Acta Arith. 59 (1991), 329-338. Zbl0705.11056
  2. [Ble1] P. M. Bleher, On the distribution of the number of lattice points inside a family of convex ovals, Duke Math. J. 67 (1992), 461-481. Zbl0762.11031
  3. [Ble2] P. M. Bleher, Distribution of energy levels of a quantum free particle on a surface of revolution, Duke Math. J. 74 (1994), 45-93. 
  4. [BCDL] P. M. Bleher, Z. Cheng, F. J. Dyson and J. L. Lebowitz, Distribution of the error term for the number of lattice points inside a shifted circle, Comm. Math. Phys. 154 (1993), 433-469. Zbl0781.11038
  5. [BK] M. N. Bleicher and M. I. Knopp, Lattice points in a sphere, Acta Arith. 10 (1965), 369-376. Zbl0131.04701
  6. [CI] F. Chamizo and H. Iwaniec, A 3-dimensional lattice point problem, in preparation. 
  7. [CN] K. Chandrasekharan and R. Narasimhan, Hecke's functional equation and the average order of arithmetical functions, Acta Arith. 6 (1961), 487-503. Zbl0101.03703
  8. [Che] J.-R. Chen, Improvement on the asymptotic formulas for the number of lattice points in a region of the three dimensions (II), Sci. Sinica 12 (1963), 751-764. Zbl0127.27503
  9. [Cra] H. Cramér, Über zwei Sätze von Herrn G. H. Hardy, Math. Z. 15 (1922), 201-210. 
  10. [Gro] E. Grosswald, Representations of Integers as Sums of Squares, Springer, New York, 1985. Zbl0574.10045
  11. [HL] G. H. Hardy and J. E. Littlewood, Tauberian theorems concerning power series and Dirichlet series whose coefficients are positive, Proc. London Math. Soc. 13 (1914), 174. Zbl45.0389.02
  12. [H-B] D. R. Heath-Brown, The distribution and moments of the error term in the Dirichlet divisor problem, Acta Arith. 60 (1992), 389-415. Zbl0725.11045
  13. [KN] E. Krätzel and W. G. Nowak, Lattice points in large convex bodies, II, Acta Arith. 62 (1992), 285-295. Zbl0769.11037
  14. [Lan1] E. Landau, Vorlesungen über Zahlentheorie, V. 1, Hirzel, Leipzig, 1927. 
  15. [Lan2] E. Landau, Ausgewählte Abhandlungen zur Gitterpunktlehre, A. Walfisz (ed.), Deutscher Verlag der Wiss., Berlin, 1962. 
  16. [Now] W. G. Nowak, On the lattice rest of a convex body in s , II, Arch. Math. (Basel) 47 (1986), 232-237. 
  17. [Ran] B. Randol, A lattice point problem, I, II, Trans. Amer. Math. Soc. 121 (1966), 257-268; 125 (1966), 101-113. 
  18. [Sze] G. Szegö, Beiträge zur Theorie der Laguerreschen Polynome. II: Zahlentheoretische Anwendungen, Math. Z. 25 (1926), 388-404. Zbl52.0175.03
  19. [Vau] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge University Press, Cambridge, 1981. 
  20. [Vin1] I. M. Vinogradov, On the number of integral points in a given domain, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 777-786. 
  21. [Vin2] I. M. Vinogradov, On the number of integral points in a sphere, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 957-968. 
  22. [Wal] A. Walfisz, Gitterpunkte in mehrdimensionalen Kugeln, PWN, Warszawa, 1957. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.