On the sums S χ ( m )

J. C. Peral

Acta Arithmetica (1995)

  • Volume: 69, Issue: 1, page 11-19
  • ISSN: 0065-1036

How to cite

top

J. C. Peral. "On the sums $S_χ(m)$." Acta Arithmetica 69.1 (1995): 11-19. <http://eudml.org/doc/206668>.

@article{J1995,
author = {J. C. Peral},
journal = {Acta Arithmetica},
keywords = {-functions; non-principal Dirichlet character; character sums},
language = {eng},
number = {1},
pages = {11-19},
title = {On the sums $S_χ(m)$},
url = {http://eudml.org/doc/206668},
volume = {69},
year = {1995},
}

TY - JOUR
AU - J. C. Peral
TI - On the sums $S_χ(m)$
JO - Acta Arithmetica
PY - 1995
VL - 69
IS - 1
SP - 11
EP - 19
LA - eng
KW - -functions; non-principal Dirichlet character; character sums
UR - http://eudml.org/doc/206668
ER -

References

top
  1. [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976. 
  2. [2] D. A. Burgess, On character sums and L-series II, Proc. London Math. Soc. 13 (1963), 524-536. Zbl0123.04404
  3. [3] D. A. Burgess, Estimating L χ ( 1 ) , Norske Vid. Selsk. Forh. 39 (1966), 101-108. 
  4. [4] A. Hildebrand, On the constant in the Pólya-Vinogradov inequality, Canad. Math. Bull. 31 (3) (1988), 347-352. Zbl0612.10033
  5. [5] H. Montgomery, Distribution questions concerning a character sum, in: Colloq. Math. Soc. János Bolyai 13, North-Holland, 1974, 195-203. 
  6. [6] H. Montgomery and R. C. Vaughan, Exponential sums with multiplicative coefficients, Invent. Math. 43 (1977), 69-82. Zbl0362.10036
  7. [7] J. Pintz, Elementary methods in the theory of the L-functions VII, Acta Arith. 32 (1977), 397-406. Zbl0331.10022
  8. [8] G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Nachr. Königl. Gesell. Wiss. Göttingen Math.-Phys. Kl. 1918, 21-29. Zbl46.0265.02
  9. [9] P. J. Stephens, Optimizing the size of L(χ,1), Proc. London Math. Soc. 24 (1972), 1-14. Zbl0225.10043
  10. [10] M. Toyoizumi, On certain character sums, Acta Arith. 55 (1990), 229-232. Zbl0702.11054
  11. [11] K. S. Williams, A class of character sums, J. London Math. Soc. 46 (1971), 67-72. Zbl0213.32804

NotesEmbed ?

top

You must be logged in to post comments.