Page 1 Next

Displaying 1 – 20 of 46

Showing per page

A hybrid mean value of the Dedekind sums

Hai Yang (2010)

Czechoslovak Mathematical Journal

The main purpose of this paper is to use the M. Toyoizumi's important work, the properties of the Dedekind sums and the estimates for character sums to study a hybrid mean value of the Dedekind sums, and give a sharper asymptotic formula for it.

A hybrid mean value related to certain Hardy sums and Kloosterman sums

Xiaoyan Guo, Wenpeng Zhang (2011)

Czechoslovak Mathematical Journal

The main purpose of this paper is using the mean value formula of Dirichlet L-functions and the analytic methods to study a hybrid mean value problem related to certain Hardy sums and Kloosterman sums, and give some interesting mean value formulae and identities for it.

A purely analytical lower bound for L ( 1 , χ )

Olivier Ramaré (2009)

Annales mathématiques Blaise Pascal

We give a simple proof of L ( 1 , χ ) q 2 ω ( q ) when χ is an odd primitiv quadratic Dirichlet character of conductor q . In particular we do not use the Dirichlet class-number formula.

An identity involving Dedekind sums and generalized Kloosterman sums

Le Huan, Jingzhe Wang, Tingting Wang (2012)

Czechoslovak Mathematical Journal

The various properties of classical Dedekind sums S ( h , q ) have been investigated by many authors. For example, Yanni Liu and Wenpeng Zhang: A hybrid mean value related to the Dedekind sums and Kloosterman sums, Acta Mathematica Sinica, 27 (2011), 435–440 studied the hybrid mean value properties involving Dedekind sums and generalized Kloosterman sums K ( m , n , r ; q ) . The main purpose of this paper, is using the analytic methods and the properties of character sums, to study the computational problem of one kind of...

Minoration au point des fonctions L attachées à des caractères de Dirichlet

Pierre Barrucand, Stéphane Louboutin (1993)

Colloquium Mathematicae

Il est connu (voir [1], [3]) que lorsque χ varie parmi les caractères de Dirichlet non quadratiques, nous avons | L ( 1 , X ) | - 1 = O ( L o g ( f χ ) ) . Nous montrons ici qu’en se restreignant aux caractères d’ordre impair donné, nous avons | L ( 1 , X ) | - 1 = o ( L o g ( f χ ) ) . Il serait évidemment bien plus satisfaisant de parvenir à prouver un tel résultat sans restreindre χ à varier parmi des caractères d’ordre fixé. Pour les caractères d’ordre pair, nous ne pouvons établir un tel résultat qu’en nous restreignant aux caractères pour lesquels les conducteurs de χ 2 restent...

Currently displaying 1 – 20 of 46

Page 1 Next