Ternary positive quadratic forms that represent all odd positive integers

Irving Kaplansky

Acta Arithmetica (1995)

  • Volume: 70, Issue: 3, page 209-214
  • ISSN: 0065-1036

How to cite

top

Irving Kaplansky. "Ternary positive quadratic forms that represent all odd positive integers." Acta Arithmetica 70.3 (1995): 209-214. <http://eudml.org/doc/206749>.

@article{IrvingKaplansky1995,
author = {Irving Kaplansky},
journal = {Acta Arithmetica},
keywords = {representation of odd positive integers; ternary quadratic forms},
language = {eng},
number = {3},
pages = {209-214},
title = {Ternary positive quadratic forms that represent all odd positive integers},
url = {http://eudml.org/doc/206749},
volume = {70},
year = {1995},
}

TY - JOUR
AU - Irving Kaplansky
TI - Ternary positive quadratic forms that represent all odd positive integers
JO - Acta Arithmetica
PY - 1995
VL - 70
IS - 3
SP - 209
EP - 214
LA - eng
KW - representation of odd positive integers; ternary quadratic forms
UR - http://eudml.org/doc/206749
ER -

References

top
  1. [1] H. Brandt und O. Intrau, Tabelle reduzierten positiver ternärer quadratischer Formen, Abh. Sächs. Akad. Wiss. Math.-Nat. Kl. 45 (1958), no. 4, MR 21, 11493. Zbl0082.03803
  2. [2] L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea reprint, 1952. 
  3. [3] P. R. Halmos, Note on almost-universal forms, Bull. Amer. Math. Soc. 44 (1938), 141-144. Zbl0018.10702
  4. [4] J. S. Hsia, Regular positive ternary quadratic forms, Mathematika 28 (1981), 231-238. Zbl0469.10009
  5. [5] G. Pall, An almost universal form, Bull. Amer. Math. Soc. 46 (1940), 291. 
  6. [6] S. Ramanujan, On the expression of a number in the form ax²+by²+cz²+du², Proc. Cambridge Philos. Soc. 19 (1917), 11-21; Collected Works, 169-178. Zbl46.0240.01
  7. [7] M. F. Willerding, Determination of all classes of positive quaternary quadratic forms which represent all positive integers, Bull. Amer. Math. Soc. 54 (1948), 334-337. Zbl0032.26603

NotesEmbed ?

top

You must be logged in to post comments.