On ternary quadratic forms over the rational numbers
Amir Jafari; Farhood Rostamkhani
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 1105-1119
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJafari, Amir, and Rostamkhani, Farhood. "On ternary quadratic forms over the rational numbers." Czechoslovak Mathematical Journal 72.4 (2022): 1105-1119. <http://eudml.org/doc/298927>.
@article{Jafari2022,
abstract = {For a ternary quadratic form over the rational numbers, we characterize the set of rational numbers represented by that form over the rational numbers. Consequently, we reprove the classical fact that any positive definite integral ternary quadratic form must fail to represent infinitely many positive integers over the rational numbers. Our proof uses only the quadratic reciprocity law and the Hasse-Minkowski theorem, and is elementary.},
author = {Jafari, Amir, Rostamkhani, Farhood},
journal = {Czechoslovak Mathematical Journal},
keywords = {ternary quadratic forms; Gauss reciprocity law; Hasse-Minkowski theorem},
language = {eng},
number = {4},
pages = {1105-1119},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On ternary quadratic forms over the rational numbers},
url = {http://eudml.org/doc/298927},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Jafari, Amir
AU - Rostamkhani, Farhood
TI - On ternary quadratic forms over the rational numbers
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1105
EP - 1119
AB - For a ternary quadratic form over the rational numbers, we characterize the set of rational numbers represented by that form over the rational numbers. Consequently, we reprove the classical fact that any positive definite integral ternary quadratic form must fail to represent infinitely many positive integers over the rational numbers. Our proof uses only the quadratic reciprocity law and the Hasse-Minkowski theorem, and is elementary.
LA - eng
KW - ternary quadratic forms; Gauss reciprocity law; Hasse-Minkowski theorem
UR - http://eudml.org/doc/298927
ER -
References
top- Albert, A. A., 10.2307/2371130, Am. J. Math. 55 (1933), 274-292. (1933) Zbl0006.29004MR1506964DOI10.2307/2371130
- Conway, J. H., 10.5948/UPO9781614440253, The Carus Mathematical Monographs 26. Mathematical Association of America, Washington (1997). (1997) Zbl0885.11002MR1478672DOI10.5948/UPO9781614440253
- Cox, D. A., 10.1002/9781118400722, Pure and Applied Mathematics. A Wiley Series of Texts, Monographs, and Tracts. John Wiley & Sons, Hoboken (2013). (2013) Zbl1275.11002MR3236783DOI10.1002/9781118400722
- Dickson, L. E., 10.1090/S0002-9904-1927-04312-9, Bull. Am. Math. Soc. 33 (1927), 63-70 9999JFM99999 53.0133.04. (1927) MR1561323DOI10.1090/S0002-9904-1927-04312-9
- Doyle, G., Williams, K. S., A positive-definite ternary quadratic form does not represent all positive integers, Integers 17 (2017), Article ID A.41, 19 pages. (2017) Zbl1412.11065MR3708292
- Duke, W., Schulze-Pillot, R., 10.1007/BF01234411, Invent. Math. 99 (1990), 49-57. (1990) Zbl0692.10020MR1029390DOI10.1007/BF01234411
- Flath, D. E., 10.1090/chel/384.H, AMS, Providence (2018). (2018) Zbl1400.11001MR3837147DOI10.1090/chel/384.H
- Gupta, H., 10.1007/BF03049015, Proc. Indian Acad. Sci., Sect. A 13 (1941), 519-520. (1941) Zbl0063.01797MR0004816DOI10.1007/BF03049015
- Jones, B. W., Pall, G., 10.1007/BF02547347, Acta Math. 70 (1939), 165-191. (1939) Zbl0020.10701MR1555447DOI10.1007/BF02547347
- Kaplansky, I., 10.4064/aa-70-3-209-214, Acta Arith. 70 (1995), 209-214. (1995) Zbl0817.11024MR1322563DOI10.4064/aa-70-3-209-214
- Kaplansky, I., Linear Algebra and Geometry: A Second Course, Dover Publications, Mineola (2003). (2003) Zbl1040.15001MR2001037
- Lebesgue, V. A., Tout nombre impair est la somme de quatre carrés dont deux sont égaux, J. Math. Pures Appl. (2) 2 (1857), 149-152 French. (1857)
- Legendre, A. M., Essai sur la théorie des nombres, Duprat, Paris (1798), French. (1798) Zbl1395.11003MR2859036
- Mordell, L. J., 10.1515/crll.1931.164.40, J. Reine Angew. Math. 164 (1931), 40-49. (1931) Zbl0001.12001MR1581249DOI10.1515/crll.1931.164.40
- Mordell, L. J., 10.1090/S0002-9904-1932-05373-3, Bull. Am. Math. Soc. 38 (1932), 277-282. (1932) Zbl0004.20004MR1562374DOI10.1090/S0002-9904-1932-05373-3
- Ono, K., Soundararajan, K., 10.1007/s002220050191, Invent. Math. 130 (1997), 415-454. (1997) Zbl0930.11022MR1483991DOI10.1007/s002220050191
- Ramanujan, S., On the expression of a number in the form , Proc. Camb. Philos. Soc. 19 (1917), 11-21 9999JFM99999 46.0240.01. (1917)
- Serre, J.-P., 10.1007/978-1-4684-9884-4, Graduate Texts in Mathematics 7. Springer, New York (1973). (1973) Zbl0256.12001MR0344216DOI10.1007/978-1-4684-9884-4
- Sun, Z.-W., 10.1007/s11425-015-4994-4, Sci. China, Math. 58 (2015), 1367-1396. (2015) Zbl1348.11031MR3353977DOI10.1007/s11425-015-4994-4
- Wu, H.-L., Sun, Z.-W., Arithmetic progressions represented by diagonal ternary quadratic forms, Available at https://arxiv.org/abs/1811.05855v1 (2018), 16 pages. (2018)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.